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Fast and accurate Monte Carlo 
sampling of first-passage times 
from Wiener diffusion models
Jan Drugowitsch

We present a new, fast approach for drawing boundary crossing samples from Wiener diffusion models. 
Diffusion models are widely applied to model choices and reaction times in two-choice decisions. 
Samples from these models can be used to simulate the choices and reaction times they predict. These 
samples, in turn, can be utilized to adjust the models’ parameters to match observed behavior from 
humans and other animals. Usually, such samples are drawn by simulating a stochastic differential 
equation in discrete time steps, which is slow and leads to biases in the reaction time estimates. 
Our method, instead, facilitates known expressions for first-passage time densities, which results in 
unbiased, exact samples and a hundred to thousand-fold speed increase in typical situations. In its most 
basic form it is restricted to diffusion models with symmetric boundaries and non-leaky accumulation, 
but our approach can be extended to also handle asymmetric boundaries or to approximate leaky 
accumulation.

For a wide range of problems, human and animal decision-makers are known to trade-off the accuracy of choices 
with the speed with which these choices are performed. The dominant set of models to explain this trade-off for 
two-choice decisions is the diffusion model1–4. These models have been successfully applied to a wide range of 
data, from memory recall1 over lexical decisions5 to perceptual decisions2,6. Recently, the same set of models were 
shown to also account very well for the neural correlates associated with these decisions [e.g.4,7–9]. Thus, they have 
become a cornerstone of decision-making research.

In its simplest form, a diffusion model is formed by a particle whose trajectory follows a stochastic Wiener 
process with overlayed deterministic drift until one of two boundaries is reached (Fig. 1(a)). Each boundary 
triggers a different choice, and the time at which the particle first reaches this boundary is the first-passage time. 
Thus, each realization of such particle trajectory yields both a choice, and a time at which this choice was per-
formed. The stochastic diffusion causes these times and choices to vary across different particle trajectory reali-
zations. Thus, for the same drift and boundary locations, the model predicts a certain probability of performing 
either choice, each of which is associated with a distribution of first-passage times. These, in turn, can be com-
pared to the behavior of humans and animals, and can be used to tune model parameters to match this behavior.

Choice probabilities and first-passage time densities can be computed either analytically, where such analyt-
ical expressions are known [e.g.1,10,11], or by repeatedly sampling choices and first-passage times by Monte Carlo 
simulations12. The sampling approach has several advantages. First, a diffusion model is easily sampled from using 
the Euler-Maruyama method [e.g.13], the stochastic extension of the Euler method, by simulating a particle trajec-
tory in small time-steps. Second, such sampling is even possible for more complex variants of diffusion models, 
for which no analytical expressions are known. Third, even if such expressions exists, the sampling approach is 
usually easier to implement12. For example, even for the simple diffusion model described above the analytical 
expressions for the first-passage time densities involve infinite series that in practice need to be truncated and 
might be error-prone to implement. For such models, simple expressions for the mean first-passage time are 
known, but they are of limited utility as the full densities are heavily skewed. Fourth, simulating a diffusion model 
is most likely the easiest way to generate example behavior predicted by this model.

To simulate diffusion models, the Euler-Maruyama method might be easy to implement, but has severe 
short-comings. As it samples whole particle trajectories, it is generally very slow. Furthermore, due to sampling a 
continuous-time process in discrete time steps, it ignores possible temporary trajectory excursions beyond either 
boundary between two consecutive trajectory samples (Fig. 1(b)). At each step, this causes it to underestimate the 

University of Geneva, Department of Basic Neuroscience, 1211 Geneva, Switzerland. Correspondence and requests 
for materials should be addressed to J.D. (email: jdrugo@gmail.com)

received: 18 August 2015

Accepted: 05 January 2016

Published: 11 February 2016

OPEN

mailto:jdrugo@gmail.com


www.nature.com/scientificreports/

2Scientific RepoRts | 6:20490 | DOI: 10.1038/srep20490

probability of reaching either boundary, and as a consequence, it over-estimates the first-passage times [e.g.13]. 
This leads to conflicting requirements on the simulation step-size. On one hand, it should be small to reduce the 
first-passage time biases. On the other hand, it should be large to speed up the stimulations. This short-coming 
also exists in higher-order particle trajectory simulation methods12, albeit to a lesser degree.

Here, we introduce a new method to sample from the first-passage time density of simple diffusion models that 
does not share the short-comings of the Euler-Maruyama and related methods. It does not suffer from any biases, 
as it directly draws exact samples by rejection sampling from the series expansion of the first-passage time density. 
Furthermore, it is in the order of a hundred to a thousand times faster than simulating the whole particle trajectory 
with typical step-sizes. Admittedly, the method is more complex than trajectory-based methods, but the author pro-
vides implementations in various programming languages on his website. It is already long know that stochastic 
simulations that use first-passage time solutions can be more efficient than regular-time-step solution methods. They 
have, for example, already been used for several decades to simulate non-linear chemical reactions14–16. In the context 
of Wiener diffusion models, a similar approach has been used previously to draw samples from a diffusion model 
without drift17,18. The addition of a drift required various changes to the method, that we will discuss in more detail 
further below. A previously developed sampling method for non-zero drifts19 uses a comparable approach to the one 
described here, but features various weaknesses (see Discussion) that makes it slower than the method presented here.

As described here, the sampling method only applies to diffusion models with symmetric boundaries around 
a central particle starting point, and a drift and diffusion variance that remains constant over time. However, it is 
easily embedded in simulations in which these parameters vary across trials. For example, we can draw samples 
from a model with a drift that varies across trials [e.g.1] by first drawing this drift and then using our method 
to sample the first-passage time and boundary for this drift. The same approach makes it applicable to variable 
boundaries and non-decision times [e.g.1] or the simulation of occasional random lapses20. The only restriction 
is that the boundaries need to remain symmetric around the particle starting point, which makes it unsuitable 
for situations in which the particle starting point varies [e.g.1]. However, even in such cases, our method can be 
embedded in an approach that provides samples for diffusion models with asymmetric boundaries19.

In what follows, we first derive the method based on rejection sampling from the series expansion of the 
first-passage time density. This includes describing two variants of this series and their relevant properties, the rejec-
tion sampling approach, and the derivation of suitable proposal densities for rejection sampling. Then, we perform 
simulations to evaluate the best settings of the two free parameters of this method, and demonstrate its superiority 
when compared to the Euler-Maruyama method. Finally, we relate it to previous work and discuss potential extensions.

Fast and accurate sampling of first-passage time densities
We consider a diffusion model in which the trajectory of a drifting and diffusing particle x(t) is described by the 
diffusion equation

µ= + , ( )x t Wd d d 1

where μ denotes the drift and dW is a Wiener process (Fig. 1(a)). Initially, the particle is located at x(0) =  0. It 
terminates its trajectory at some time t >  0 as soon as it reaches one of two boundaries, located at − 1 and 1. 
The time at which either boundary is reached is known as the first-passage time. In the following, we describe a 
fast method to draw samples from both first-passage time and boundary. After that, we describe how the same 
procedure can be used to draw samples from diffusion models with non-unit boundary locations and non-unit 
diffusion variance.
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Figure 1. A Wiener diffusion model. (a) A diffusion model bounded at 1 and − 1, with a positive drift (black 
arrow extending from origin). A choice is triggered as soon as the drifting and diffusion particle, x(t), reaches 
one of the two boundaries. The black example trajectory triggers choice 1 at time t*. The stochastic diffusion 
causes variability in the first-passage times (solid grey trajectories) and choices (dashed grey trajectories).  
(b) Bias of the Euler-Maruyama method applied to simulating diffusion models, due to discretizing a 
continuous-time process. This method simulates the stochastic process in discrete time-steps of Δ . The 
discretized trajectory (black line) might miss temporary excursion of the continuous-time trajectory (grey line) 
beyond the boundary (black arrow), which causes a bias towards higher first-passage times.
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First-passage time densities. For the considered diffusion process, the first-passage time densities gs,+(t) 
for the upper boundary, and gs,−(t) for the lower boundary can be expressed as an infinite series. The series that 
will be described are both exact in the infinite limit, but converge to the correct density at different rates, depend-
ing on t. The first series is found by the method of images21, resulting in

( ) ≡ ( ( ) = , ∈ ( )) = ( ), ( )
µ
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where ( ) = ( ) ∈ − , , ∀ < ( ) <t x x t s t x s{ : { 1 1} : 1}  is the set of all particle trajectories that reach either of 
the boundaries for the first time at time t. In the above, gs,0(t) denotes the infinite series
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This series is known to converge rapidly for small times10,17,18, which is indicated by its subscript ⋅s for short-time 
series.

An alternative approach to compute the first-passage time densities is to seek a Fourier series solution21, 
which, after some simplification due to symmetric boundaries, results in
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with the corresponding infinite series
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This series converges rapidly for large times10,17,18, which is indicated by its subscript ⋅l for long-time series.
A useful property of diffusion models with symmetric boundaries is that their first-passage times are inde-

pendent of which boundary is reached. To see this, consider Eqs. (2) and (3), which reveal that these joint prob-
abilities are re-scaled versions of each other, whose scaling depends only on the drift μ, but not on time t. As a 
result, they can be factored into

( ) = ( ) , ( ) = ( ) , ( ),+ + ,− −g t g t g g t g t g 7s s s s

where gs(t) is the first-passage time irrespective of which boundary was reached,
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and g+ and g− are the probabilities of reaching the upper and lower boundary, respectively, irrespective of the 
first-passage time,

≡ ( ( ) = ∈ ( )) =
+

,
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e
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The same follows from Eq. (5) for the long-time version, with the corresponding first-passage time density 
( ) = ( ) + ( ),+ ,−g t g t g tl l l .

A consequence of this factorization is that the first-passage time can be sampled independently of which 
boundary was reached. Furthermore, sampling the boundary corresponds to a draw from a Bernoulli distribu-
tion with probability g+. Thus, the rest of this section focuses on how to draw samples from the first-passage time 
density, using either gs(t) or gl(t).

Rejection sampling from a series expansion. To sample from the first-passage time density, we have to 
overcome several obstacles. First, it is not possible to draw samples from this density directly. We tackle this prob-
lem by rejection sampling, for which it is sufficient to find an easy-to-sample proposal density that upper-bounds 
the first-passage time target density up to a proportionality constant. Second, such rejection sampling requires the 
accurate evaluation of the value of this target density for particular times. However, the density is only available as 
a series expansion, which prohibits such accurate computation, and makes even approximate evaluations compu-
tationally expensive. Fortunately, both described series expansions feature a property that makes them suitable for 
a variant of rejection sampling that only requires the computation of few elements in these series, such that exact 
samples can be drawn without the use of approximations. Third, each of the two series only features this property 
for a limited range of first-passage times. In combination, they cover all non-negative times, such that, depending 
on the time, one or the other can be chosen. However, the series feature qualitatively different properties that 
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need to be taken into account when designing suitable proposal densities for rejection sampling. In the below, we 
handle each of these points in turn.

Rejection sampling is a sampling method in which one draws a sample t* from an easy-to-sample proposal 
density ∼ ( )⁎t f t  that tightly upper-bounds the desired sampling density g(t), up to a proportionality constant Cf 
(Fig. 2(a)). That is ( ) ≥ ( )C f t g tf  for all t. Assuming for now that ( )⁎g t  can be computed rapidly and accurately, 
this sample is accepted if ≤ ( )⁎z g t , where ∼ ( , ( ))⁎z C f t0 f  is a sample from the uniform distribution over 
, ( )⁎C f t[0 ]f . Otherwise, sampling is repeated until the first sample is accepted [22, Ch. 2].

The efficiency of rejection sampling hinges on how likely the samples drawn from the proposal density are 
accepted. To ensure a high acceptance likelihood, the scaled proposal density ( )C f tf  needs to tightly upper-bound 
the target density g(t), as illustrated in Fig. 2(a). This is particularly important for the tails of the target density. A 
proposal density that only loosely bounds these tails causes more samples to be drawn from these tail regions 
which are in turn very likely rejected (e.g. sample ⁎t2  in Fig. 2(a)). Thus, great care will be put on tightly bounding 
the tail regions when designing suitable proposal densities.

We cannot directly apply rejection sampling to draw samples from the first-passage times, as g(t*) is only 
known in the form of infinite series. However, these series have a property that makes them suitable for the series 
method, which is a particular variant of rejection sampling [22, Ch. 4]. Focusing for now on the long-time series 
used in ( )⁎g tl , we will show in the next section that its elements form a sequence that alternatingly upper and 
lower-bound the true ( )⁎g tl  (Fig. 2(b)). That is, for sufficiently large t* we can form a easy-to-compute sequence 
( ), ( ), …⁎ ⁎g t g tl l

0 1  for which ( ) > ( ) > ( )+⁎ ⁎ ⁎g t g t g tl
n

l
n

l
2  for all even n’s, and ( ) < ( ) < ( )+⁎ ⁎ ⁎g t g t g tl

n
l
n

l
2  for all 

odd n’s. As a result, we can define a region ( ), ( )+⁎ ⁎g t g t[ ]l
n

l
n 1  (assuming odd n) that is guaranteed to contain 

( )⁎g tl , and whose size shrinks towards zero for increasing n.
With such a sequence, rejection sampling can be performed as illustrated in Fig. 2(b). First, we again draw a 

sample t* from some proposal density f(t) that upper-bounds ( )g tl
0 , and for which ( ) ≥ ( )C f t g tf l  for all t. 

Additionally, we draw ∼ ( , ( ))⁎z C f t0 f . If > ( )⁎z g tl
0 , the sample of t* is immediately rejected, and if < ( )⁎z g tl

1  
it is immediately accepted. Otherwise, we proceed iteratively to narrow the region around ( )⁎g tl  until rejection or 
acceptance occurs. For n =  2 and any subsequent even n, we compute ( )⁎g tl

n  and reject t* if > ( )⁎z g tl
n . Otherwise, 

we increment n by one, compute ( )⁎g tl
n , and accept t* if < ( )⁎z g tl

n . If neither occurred, we increment n by one 
and return to the previous step for even n’s. This procedure is repeated until t* is either accepted or rejected. As the 
sequence of ( )⁎g tl

n ’s converges to ( )⁎g tl , the procedure is guaranteed to terminate.
In the following we show that such a convergent series can be found for both gs(t) and gl(t). This convergence 

is only guaranteed for small t for gs(t) and large t for gl(t), such that the choice of series depends on the initially 
sampled t*. After having shown this, we design suitable proposal densities for both gs(t) and gl(t).

Sequences of upper and lower bounds on gs(t) and gl(t). Considering first the short-time series,  
we show how to construct a sequence ( ), ( ), …g t g ts s

0 1  that converges to gs(t) in Eq. (8) from above and below for 
even and odd n’s, respectively. For any fixed time t, gs(t) is a scaled version of ( ),g ts 0 , Eq. (4), such that it is suffi-
cient to construct such a sequence on ( ),g ts 0 . Before doing so, note that the kth term of ( ),g ts 0  is equivalent to the 
(1 −  k)th term, such that they can be re-grouped into a more convenient form, given by

Figure 2. Rejection sampling from a convergent series. (a) shows the true first-passage target density g(t) for 
a drift of μ =  1, and some proposal density f(t) that upper-bounds this target density up to some proportionality 
constant Cf. Assume drawing ∼ ( )⁎t f t  and ∼ ( , ( ))⁎z C f t0 f . Then rejection sampling accepts t* if and only if 
≤ ( )⁎z g t . It is important that ( )C f tf  tightly upper-bounds g(t), as illustrated by two samples, ⁎t1  and ⁎t2 . Either 

sample is accepted if the corresponding z falls into the green region, and rejected if it falls into the red region. 
Thus, the first sample, ⁎t1  is very likely accepted, while ⁎t2  is more likely to be rejected, due to ( )C f tf  only loosely 
bounding g(t) in the tails. (b) The sequence ( ), ( ), …⁎ ⁎g t g tl l

0 1  converges to ( )⁎g t  from above and below, thus 
forming a reject/accept region around ( )⁎g t  that increases in size with every additional element of this sequence. 
Thus, the t* can be accepted (for z1, green dot) or rejected (for z2, red dot) while computing only a small number 
of these elements.
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Based on this, we define the truncated series
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0  for odd n, as required by our 
sampling method.

For the long-time series, we define
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2 , as the truncated series approaching ( ),g tl 0 , Eq. (6). As for the short-time 

series, this truncated series can be computed recursively by
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by our sampling method.

Overall, the two series differ only in their applicable range of t and in the constants that they rely on. Therefore, 
as shown in Table 1, the accept/reject decision for exact sampling with both series can be implemented by the 
same function that takes the series-dependent C2 as an argument.

Suitable proposal distributions. What remains is to define a proposal density to draw the t*’s from. This 
proposal f(t) needs to be easy to sample from, and, scaled by Cf, needs to tightly upper-bound the density we wish 
to sample from. As previously discussed, the tightness of this bound is important, as it determines the rejection 
rate, and thus the efficiency of the sampling procedure. Here, we construct two such proposal densities. The first, 
f1(t), is tight for small μ, and the second, f2(t), for large μ. The final sampling scheme chooses between these pro-
posal densities on the basis of comparing the desired μ to some threshold µ. In addition to this, we assume some 
t̃  below and above which the short-time and long-time series are used, respectively, to decide if the drawn t* is 
accepted. For now, we only require ∈ . , .t̃ [0 027 15 660] (from Eqs. (15) and (18)), but later we will tune this param-
eter to maximize sampling performance.

To use the series-based accept/reject procedure, either proposal density should upper-bound the largest 
bound in the sequence that approaches ( ) = ( )g t g ts l . For both the short-time and long-time series, this bound is 
given by the n =  0 element in the respective sequence, such that, by combining Eqs. (8), (12) and (16), these 
bounds are given by
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as illustrated in Fig. 3(a).
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Proposal distribution for small μ. In the above, ( )g tl
0  is proportional to the density of an exponential distribution 

with rate µ π( + )/4 82 2 . This distribution is easy to sample from, such that we choose
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for some a ≥  1. The proposal ( ),f ts1  can be shown to emerge from = /( )t aX1 2 , where X is a standard Gaussian 
random variable with zero mean and unit variance. 
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To sample from this proposal, we cannot directly use Gaussian samples, as these would only be useful for the 
short-time part of the support of the proposal density. Instead, we use the inversion method [22, Ch. 2], which first 
draws a value from a uniform distribution and then transforms this value by the inverse cumulative function to 
achieve samples from the desired density. Thus, the method requires the full cumulative functions of the proposal 
densities. For ( ),f ts1 , this cumulative function and its inverse are given by
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where  ( ⋅ )erfc  and ( ⋅ )−erfc 1  are the complementary error function and its inverse, respectively. For ( ),f tl1 , we 
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Combining ( ),F ts1  and ( ),F tl1  at t̃ , and adding the appropriate scaling constants results in the overall cumulative
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. The densities 
that the cumulative functions are based on are unnormalized, such that (∞)F1  is not guaranteed to be one, as 
would be the case for normalized densities. Thus, to sample according to F1(t), we draw a P uniformly from 
, (∞)F[0 ]1  (rather than from ,[0 1], as we would for normalized densities), and then choose t* according to

function , ,( ( ) )⁎ ⁎t f t CACCEPTT 2

 draw ∼ ( , ( ))⁎z f t0

 ← −b e C2

 ←k 3

 while true do

  if z >  b then return false ▷ reject above upper bound

  ← − −


˜b b ke C k2
2

  if z <  b then return true ▷ accept below lower bound

  ← + k k 2

  ← + × −


˜b b k e C k2
2

  ← + k k 2

Table 1.  Accept/reject algorithm for converging series. t* is a sample drawn according to proposal f(t), where 
f(t) strictly dominates ( ) = ∑ (− ) ( + )=

∞ − ( + )g t k e1 2 1k
k C k

0
2 12

2
. The function returns if t* is to be accepted/

rejected.
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Overall, this results in the algorithm in Table 2, where we have used

( )( + )
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1
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1
2
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for the adequately re-scaled short-time proposal at t*, and the corresponding

Figure 3. The upper bounds on the first-passage time, and proposal densities for different drifts μ.  
(a) shows the true first-passage time density g(t), and the two upper bounds, ( )g ts

0  and ( )g tl
0 , resulting from a 

truncation of the respective series expansion. For low t, ( )g ts
0  is indistinguishable from g(t). The same applies to 

( )g tl
0  for large t. (b) shows the proposal density for low and high drift μ. As can be seen, the Gaussian/

exponential proposal, ( ),f ts1  and ( ),f tl1 , tightly upper-bounds ( )g ts
0  and ( )g tl

0  for small μ (right panels). For 
such μ, the inverse-Gaussian proposal, ( )f t2 , is less tight for larger t (black arrow, lower right panel). For larger 
μ, ( ),f ts1  only loosely upper-bounds ( )g ts

0  (black arrow, lower left panel). In these cases, ( )f t2  becomes a better 
proposal density. For illustration, the threshold t̃  between the short and long-time series was in all panels fixed 
to = .t̃ 0 62.
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for the long-time proposal.

Proposal distribution for large μ. As Fig. 3(b) illustrates, the described proposal forms a tight upper bound on 
( )g ts

0  for small μ, but fails to do so for large μ. In case of the latter, we use the property that ( )g ts
0  is proportional 

to an inverse-Gaussian distribution with mean µ −1 and shape 1, which we can sample from using the proposal 
density

π
( ) = .

( )

µ µ
− − −f t e e

2 29
t t

t

2

1
2

3
2 log 2

2

A scaling constant of = ( + )µ µ µ− −C e e ef 2
 ensures that ( ) = ( )C f t g tf s2

0
2

, but it is not guaranteed to 
upper-bound ( )g tl

0  for all ≥ ˜t t . ( )g ts
0  and gl

0 intersect at ≈ .t̂ 0 63662, above which ( ) > ( )g t g ts l
0 0  is guaranteed 

(see Fig. 3(a)). Thus, as long as ≥˜ ^t t , the above C f 2
 causes the proposal to upper-bound ( )g tl

0 . As soon as <˜ ^t t , 
we need to additionally re-scale the proposal by
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Figure 3(b) shows that this proposal provides a tighter bound for larger μ. Overall, this results in the algorithm in 
Table 3, whose constants Cs and Cl are based on an adequate re-scaling of the proposal density, and where 
( , )a bIG  denotes an inverse-Gaussian distribution with mean a and scale b.

The complete method. As Fig. 3(b) illustrates, the Gaussian/exponential proposal, ( ),f ts1  and ( ),f tl1 , is 
tight for small μ, and the inverse-Gaussian proposal ( )f t2  is tight for large μ. Therefore, we choose between them 
according to some threshold µ, to be determined later.

To sample from more general diffusion models with drift µ†, non-unit variance σ2 and boundaries at θ and − θ, 
we re-scale particle location x and time t in Eq. (1) by θ=†x x  and θ σ= /†t t 2 2, resulting in

µ σ= + , ( )† † †x t Wd d d 322

where μ in the base diffusion model relates to µ† by µ µ θ σ= /† 2. Once x in the base diffusion model reaches − 1 
or 1, †x  in the re-scaled model reaches − θ or θ. Therefore, we can sample from the more general model by draw-
ing a sample t* from the base diffusion model with drift μ, and then re-scaling this sample according to 

θ σ= /† ⁎t t 2 2.

function µ,( )t̃SAMPLESMALLMU

  compute a, 
,

C f s1
, 

,
C f s2

, ( ), ˜F ts1 , ( ), ˜F tl1 , and (∞)F1  (see Proposal distribution for small μ)

  while true do

   draw ∼ ( , (∞))P F0 1

   if ≤ ( )
, , ˜P C F tf s s1 1  then ▷ use the short-time series

    ←








,

−

,

⁎t F s
P

C f s
1

1

1

    if 





, ,







µ µ
− −

( − )
+⁎ ⁎

⁎

⁎t eACCEPTT at
a

a
t

t

1
2

1 2 2

2 1
2  then return t*

   else ▷ use the long-time series

    ←





+ ( )



,

−
−

, , ( )

,
, ˜⁎

˜
t F F tl

P C f sF s t

C f l
l1

1 1 1

1
1

    if 




, ,






π π−⁎
⁎ ⁎

t eACCEPTT
t t

2
8

2

8
 then return t*

Table 2.  Algorithm to sample first-passage times for small μ.
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This leads to the algorithm in Table 4, which returns a sample of the first-passage time, together with which 
boundary was reached first. In this algorithm, ( )a  denotes a draw from a Bernoulli distribution with probability 
a, where we have used the boundary probability g+ as given by Eq. (9).

Simulations
In this section we show by simulations how to set the thresholds t̃  and µ, and demonstrate the speed-up the the 
proposed method achieves when compared to simulating a diffusion model by the Euler-Maruyama method. All 
reported sampling speeds result from a single-core Julia implementation of the algorithms, running on a Mid-
2014 15” MacBook Pro with a 2.8 GHz Intel Core i7 processor and 16 GB of RAM. Implementations of the pro-
posed algorithm are available on the author’s webpage in Julia, as well as in C+ + 11, with MATLAB and Python 
interfaces.

Tuning the thresholds t  and µ̃. We start by finding the best threshold t̃  between the short-time and 
long-time series expansion for both proposal distributions. In all cases, sampling speed is on one hand deter-
mined by how tight the proposal upper-bounds ( )g ts

0  and ( )g tl
0 , and, on the other hand, by how many elements 

in the corresponding sequence need to be evaluated before the proposed t* sample can be accepted or rejected. 
Also, a change in drift μ causes a change in both the target density and the proposals. To take all of these factors 
into account, we measured the time it took to draw 106 samples for a set of different t̃  and μ. For each t̃  and μ we 
repeated this procedure 100 times, discarded the top and bottom 20% sampling times as outliers, and averaged 
over the rest. The resulting average sampling times are shown in Fig. 4(a).

For the Gaussian/exponential proposal, ( ),f ts1  and ( ),f tl1 , Fig. 4(a) shows that, for small μ, sampling speed is 
mostly independent of the choice of t̃ , as long as > .t̃ 0 2. As soon as μ rises above around 1, increasingly smaller 
t̃  lead to more rapid sampling. The relationship between μ and the ̃t  that maximizes sampling speed turned out to 
be well captured by µ µ( ) = . + . (− / )t̃ 0 12 0 5 exp 3  (dashed line in Fig. 4), which ranges from 0.62 for small μ to 
0.12 for large μ. We acquired this function to set t̃  for all future uses of this proposal.

For the inverse-Gaussian proposal, ( )f t2 , Fig. 4(a) demonstrates that μ and t̃  influence the sampling speed 
largely independently. An increasing drift μ generally causes faster sampling, which can be traced back to ( )f t2  
being a tighter upper bound in such cases. The threshold t̃  did not influence the proposal ( )f t2  directly, but mod-
ulated sampling speed by determining which series was used to accept or reject the drawn time samples. Sampling 

function µ,( )t̃SAMPLELARGEMU

  if ≥ .t̃ 0 63662 then

    ←C 0s , π← − −πC log log 2l 4
1
2

  else

   ← − + +π ˜˜
˜C tlogl

t
t

2

8
3
2

1
2

   π← + + πC C log 2 logs l
1
2 4

  while true do

   draw ( )∼ ,
µ

⁎t 11IG

   if ≤ ˜⁎t t  then ▷ use the short-time series

    if ( ), ,−⁎ ⁎ ⁎t eACCEPTT Cs t t

1
2

1
2  then return t*

   else ▷ use the long-time series

    if 

 , ,





π− −⁎ ⁎ ⁎ ⁎
t eACCEPTT Cl t t t1

2
3
2 log 2

8
 then return t*

Table 3.  Algorithm to sample first-passage times for large μ.

function µ θ σ µ, , , ,( )∼˜† tSAMPLEFPT 2

  µ ← µ θ

σ

†
2

  if µ µ≤  then µ← ( , )˜⁎t tSAMPLESMALLMU

  else µ← ( , )˜⁎t tSAMPLELARGEMU

  return ( )

 ,





θ

σ µ+ −

⁎t

e

2

2
1

1 2

Table 4.  The complete sampling algorithm. The function takes the drift µ†, boundary θ, and diffusion 
variance σ2 and returns the tuple (T, X), where T is a sample of the first-passage time, and X =  1 (X =  0) if the 
upper (lower) boundary was reached first. t̃  and µ are tuning parameters whose values are optimized in the 
Simulations section.
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was slow for small t̃ , but for ≥t̃ 1, this threshold had little influence on the sampling speed. Thus, independent of 
the drift, we chose = .t̃ 2 5 for this proposal (dashed line in Fig. 4), which gave the overall best performance.

Having determined a tuned t̃  for each proposal, we now turn to the question of how to set µ to choose between 
the two proposal densities. To do so, we evaluated the sampling speed associated with either proposal as before, 
for a set of different μ, but this time using the tuned t̃ . In particular for the inverse-Gaussian proposal, using this 
t̃  led to simplified algorithms (see Table 3 for = .t̃ 2 5), and an associated increase in sampling speed. The resulting 
speeds for both proposals are shown in Fig. 4(b). As expected, the Gaussian/exponential proposal performs better 
for small μ, and the inverse-Gaussian proposal for large μ. Their speeds intersect at around µ = 1 (dashed line in 
Fig. 4(b)), which we acquired as the threshold to decide between the two proposal densities.

Speed-up when compared to the Euler-Maruyama method. To get an idea of the speed-up achieved 
by the proposed method, we compare it to the standard Euler-Maruyama method for simulating diffusion mod-
els. This method starts at x0 =  0 and then iterates over

µ η= + ∆ + ∆ , ( )+x x 33n n n1

until ≥x 1n . In the above, Δ  is a small step-size, and ηn is a zero-mean unit-variance Gaussian random variable. 
While easy to implement, the algorithm does not take into account excursions of the x(t) trajectory beyond − 1 or 
1 between two consecutive trajectory samples, xn and xn+1 (see Fig. 1(b)), which makes it prone to over-estimating 
the first-passage time13. The resulting bias is shown in Fig. 5(a) for different step-sizes Δ  and drifts μ, which illus-
trates that larger step-sizes cause an increase in the bias. Taking larger steps also lowers simulation time, such that 
the choice of Δ  is a trade-off between minimizing bias and maximizing sampling speed. This trade-off is not 
present in our method, which always generates unbiased first-passage time samples.

As there is no single best step-size for the Euler-Maruyama method, we compared the speed of our method 
to that of the Euler-Maruyama method for different step-sizes. For either method, we found the sampling speed 
as before, by computing an average over 100 runs of 106 samples each, while discarding the slowest and fastest 
20% of these runs as outliers. As shown in Fig. 5(b), this procedure revealed a speed-up by a factor of 100 to 

Figure 4. Average time per sample as function of the drift μ and threshold t̃ . The threshold t̃  determines if 
accept/reject is determined by the short-time or long-time series. (a) shows the sampling speed for both the 
Gaussian/exponential and the inverse-Gaussian proposal for different drifts and thresholds. The black, dashed 
line corresponds to µ µ( ) = . + . (− / )t̃ 0 12 0 5 exp 3  and = .t̃ 2 5 for the Gaussian/exponential and inverse-
Gaussian proposals, respectively. It shows the sample speeds associated with the chosen threshold values.  
(b) shows how the sampling speeds for the two proposals with tuned thresholds t̃  depends on the drift μ, and 
the resulting threshold µ = 1 that determines which proposal to use. The sampling times are generally lower 
than in (a), as fixing t̃  leads in some cases to a simplification of the sampling algorithm.
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1000 for sensible step-sizes, Δ  ≤  1 ms, as recommended by (ref. 12). Even for extreme step-sizes of Δ  =  50 ms, in 
which the Euler-Maruyama method might over-estimate the first-passage times by a factor of two, our method 
featured faster sampling times for μ <  5. Thus, there does not appear any sensible parameter range in which the 
Euler-Maruyama method yielded lower sampling times than our method. For this reason, our method should 
always be the preferred approach.

Discussion
We have developed a fast and unbiased method to sample first-passage times from diffusion models. This method 
is based on rejection sampling from the known infinite series expansion to the first-passage time densities. 
Making use of properties of this series, we showed that samples can be rejected or accepted while computing 
only few terms of this series. The method features two parameters that we have tuned by simulations to maximize 
sampling speed. Overall, our method draws unbiased samples roughly a hundred to a thousand times faster than 
the Euler-Maruyama method that only provides biased samples.

Previously, a similar approach has been used to draw samples from a diffusion model with zero drift17,18. This 
allowed the authors to directly use the upper bounds, ( )g ts

0  and ( )g tl
0 , as proposal densities, and draw samples 

from the resulting density by the inverse method. Once we introduced a non-zero drift, these densities became 
inadequate, such that we had to replace that bounding ( )g ts

0  with a time-rescaled variant, ( ),f ts1 . Even then, the 
proposal only loosely bounds ( )g ts

0  for large μ, which might lead to a large rejection rate and thus inefficient sam-
pling. For this reason, we used another inverse-Gaussian proposal density ( )f t2  that is tighter for μ >  1 and, as a 
consequence, provides faster sampling for such μ. Interestingly, this proposal corresponds to the first-passage 
time density for diffusion models with a single bound21. Hence, as soon as the drift towards this bound is suffi-
ciently large, the contribution of the opposing bound to this density becomes negligible.

A previously proposed approach19 for non-zero drifts is also based on rejection sampling and so comparable to 
the method proposed here. It differs from our method in the following points. First, it features a single, less-tight 
proposal density whose acceptance rate decreases with increasing drift rates. Our method avoids this by using dif-
ferent proposal densities for small and large drift rates. Second, the previous approach does not use the alternating 
lower/upper-bound property of the series expansion of the first-passage time densities to guide rejection, but 
instead truncates this expansion after a fixed number of terms. If the expansion is truncated after too few terms, 
sampling will be inaccurate. If too many terms are evaluated, the method will be slower than ours. Third, the 
series expansion used in19 corresponds to the Fourier series solution, Eq. (5) which is known to converge quickly 
for large drift rates, but slowly for small drift rates. Therefore, the number of terms after which to best truncate 
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Figure 5. Comparison of our method to the Euler-Maruyama method. (a) shows the overestimation of first-
passage time resulting from the Euler-Maruyama method for different step-sizes Δ  and drifts μ. For each Δ  and 
μ we computed the average first-passage time by averaging over 107 Euler-Maruyama simulations of a diffusion 
model. The degree of over-estimation was found by dividing this average by the analytical expression for this 
average, given by tanh(μ)/μ if μ >  0 and 1 otherwise21. (b) illustrates the speed-up achieved by our method, 
when compared to the Euler-Maruyama method, for different step-size Δ  for the latter, and different drifts μ. 
A speed-up of 10 means that, on average, our method yields samples ten times faster than the Euler-Maruyama 
method.
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Eq. (5) depends on the drift rate, which is not considered in (ref. 19). We, instead, use a different series for small 
drift rates, which makes the method overall faster.

In terms of sampling speed, we compared our method to the Euler-Maruyama method, which is known to 
be both biased and slow. Higher-order alternatives to the stimulation of stochastic differential equations [e.g.23] 
might reduce this bias, and thus might seem a more adequate performance baseline. However, their lower bias 
comes at a higher computational cost, which makes them slower than the Euler-Maruyama method. Also, 
while they might be able to lower the bias, they will not be able to completely eliminate it. Therefore, even these 
higher-order methods will be no match to the method we have proposed. Furthermore, for the sake of fitting 
diffusion model parameters, they only provide a marginal improvement over the most basic Euler-Maruyama 
method12.

While our method was developed for a simple diffusion model with symmetric unit boundaries and a unit 
diffusion variance, time and space rescaling makes it applicable to arbitrary boundary levels and diffusion var-
iances. Furthermore, it can be embedded within a sampler that also models drifts, bounds, and other variables 
as random, thus providing additional levels of flexibility [e.g.1,11]. One restriction for our method to work is that 
the boundaries need to be symmetric around the particle starting point. This restriction ensures that both the 
short-time and long-time series alternatingly form upper and lower bounds on the true first-passage time density. 
For asymmetric boundaries, this property is not guaranteed for the long-time series, such that we are unable to 
use the same rejection sampling variant.

One possible extension to sample efficiently from diffusion models with asymmetric boundaries is illustrated 
in Fig. 6(a). The idea is to use the symmetric sampler as a building block to sample from more complex diffusion 
models, analogous to the method introduced by (refs. 17–19). In the case of asymmetric boundaries, sampling 
would commence by assuming a symmetric diffusion model that is tightly bounded by the asymmetric model. 
When reaching the boundary that is shared by both models, sampling would stop and return the sampled time 
and boundary. Otherwise, sampling continues from another symmetric diffusion model that is again tightly 
bounded by the asymmetric model, but is this time centered on the previously terminal particle location. This 
procedure is continued until the reached boundary is that shared by both the symmetric and the asymmetric 
model. At that point, the total time, as well as the reached boundary are returned.

A similar approach allows us to approximate samples from an Ornstein-Uhlenbeck process, or leaky 
accumulator, which acts as another popular psychological model24. In this case, we could approximate 
the leak, which theoretically varies continuously over the particle space, by a sequence of regionally 
constrained leak-free diffusions, each of which are represented by symmetric diffusion models with 
a different drift (Fig. 6(b)). Due to the approximation, this approach would unfortunately introduce a 
bias. An unbiased alternative is to use a method that samples from such leaky processes without bias, 
by creating a sequence of skeleton point connected by Brownian bridges25. While this has the potential 
for faithfully sampling from leaky processes, its efficiency when compared to the the Euler-Maruyama 
method remains to be evaluated.

Conclusions
We have presented a new method to sample the first-passage time and reached boundary for Wiener dif-
fusion models. Our method is superior to previously used approaches in that it is both unbiased and 
significantly faster. While restricted to diffusion models with boundaries symmetric around the starting 
point, it can act as a building block to sample from models that violate this constraint. Thus, it promises 
to extend its reach, improving upon both fitting such models to behavioral data and simulating them with 
high efficiency.

Figure 6. Possible extensions of the proposed method. (a) Application to diffusion models with asymmetric 
boundaries. Such boundaries can be handled by using a symmetric diffusion model centered on the current 
particle location that is tightly bounded by the asymmetric diffusion model (shaded areas). A sample is returned 
if a boundary shared by both diffusion models is reached (sample 2). Otherwise (sample 1), a new symmetric 
diffusion model is inscribed, and the procedure is repeated. (b) Approximating a leaky accumulator. A leaky 
accumulator is governed by the stochastic process τ µ= (− / + ) +x x t Wd d d , but can be locally approximated 
by µ≈ +†x t Wd d d , where µ τ µ= − / +† x . Splitting x into equally-sized regions, each endowed with a 
different drift µ†, results in the piece-wise sampling scheme illustrated above.
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