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Causal Inference and Explaining 
Away in a Spiking Network
Rubén Moreno-Bote1,2,3 & Jan Drugowitsch4

While the brain uses spiking neurons for communication, theoretical research on brain computations 
has mostly focused on non-spiking networks. The nature of spike-based algorithms that achieve 
complex computations, such as object probabilistic inference, is largely unknown. Here we 
demonstrate that a family of high-dimensional quadratic optimization problems with non-negativity 
constraints can be solved exactly and efficiently by a network of spiking neurons. The network 
naturally imposes the non-negativity of causal contributions that is fundamental to causal inference, 
and uses simple operations, such as linear synapses with realistic time constants, and neural 
spike generation and reset non-linearities. The network infers the set of most likely causes from 
an observation using explaining away, which is dynamically implemented by spike-based, tuned 
inhibition. The algorithm performs remarkably well even when the network intrinsically generates 
variable spike trains, the timing of spikes is scrambled by external sources of noise, or the network is 
mistuned. This type of network might underlie tasks such as odor identification and classification.

The brain must efficiently implement causal inference to solve problems such as object recognition 
because the number of potential sensory stimuli is enormous, and also because stimuli belonging to dif-
ferent classes are often remarkably similar1–4. For example, we can distinguish the smell of coffee from tea 
and from many other similar odors with seeming ease. Yet, in terms of the computations involved, this 
task is hard as there are many possible odors to be recognized: if odors were made of just three chemicals 
out of one hundred, there would be close to one million odors among which to choose.

Massively parallel networks of relatively simple elements, such as cortical neuronal networks, are very 
well-suited to perform causal inference in the high-dimensional spaces that characterize human sen-
sory domains5–7. Although hallmark network architectures have been designed that address causal infer-
ence as well as other hard computational problems5,8,9, these systems are based on binary or rate-based 
implementations, and thus do not feature the spike-based dynamics that characterize biological neuronal 
networks. More recent work has considered the computations that biophysically plausible spike-based 
networks can perform10–16, including learning and solving causal inference problems, and typically, but 
not always, using stochastically spiking units17–20. Despite this progress, it still remains unknown in gen-
eral what causal inference problems can be solved by biologically realistic spiking networks.

In this paper we show how and under which conditions spiking networks can perform causal inference 
over high-dimensional spaces that is representable as a quadratic programming problem with non-negative 
inequality constraints. We demonstrate that a specifically tuned network of integrate-and-fire neurons 
can compute the set of most likely causes given a noisy observation of a linear combination of these 
causes weighted by non-negative coefficients. This requires finding the solution to a high-dimensional 
quadratic optimization problem with non-negativity constraints, an operation that cannot be achieved 
by linear networks. As expected, our networks find the solution using explaining away, which suppresses 
irrelevant causes when the observation can be already explained2,3. The novelty of our implementation 
is that, rather than providing a rate-based solution, explaining away operates dynamically solely by the 
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use of spikes. The network design is remarkably simple, consisting of linear synaptic interactions with 
realistic time constants and hard non-linearities for the spike generation mechanism. Despite such a 
straight-forward implementation, the spiking network can discriminate a cause among a multitude of 
other similar causes in just a few spikes. When confronted with a complex mixture of causes, the network 
can exactly and efficiently determine all the components of the mixture. The network is robust against 
internally and externally generated sources of variability, and against mistuning in the recurrent connec-
tivity. We show that, rather than encoding information about the causes in the firing rates of individual 
neurons or in precise spike timing, this information is encoded in the slow covariations of the firing rates 
of the whole neural population.

The dynamics and architecture of our networks are closely related to other rate-based and spiking net-
works for stimulus representation, stimulus tracking and approximate quadratic programming13,14,21–23, 
but depart from previous work in the specific details of derivation and neuronal architecture and in 
the use of more flexible synaptic kernels. Furthermore, the dynamics of our networks substantially dif-
fer from networks based on sampling of probability distributions17,24,25 and goes beyond cue combina-
tion and marginalization in lower-dimensional spaces12,26 by focusing on higher-dimensional inference 
problems.

Results
Generative model of causes and observables. Many every-day decisions are based on inferences 
about hidden causes from ambiguous and noisy observations. Consider inferring the cause of observing 
a wet pavement in the morning. Many events could have caused it being wet, such as rain during the 
night, or a gardener watering a park nearby. In many other related common tasks, like in object recogni-
tion, such inference problems become increasingly difficult: a very large set of causes can originate from 
very similar observations, such as, for example, when trying to identify a person from the contours of 
her shadow. Our aim is to study the algorithms that can be implemented by spiking networks to solve 
Bayesian inference problems like those above.

Figure 1. A spiking network can exactly solve a high-dimensional causal inference problem.  
(a,b) Generative model. A potentially very large number N of hidden causes generate an observation (a). Each 
cause i is represented as an entry of the N dimensional vector r, and it is characterized by a non-negative 
number, ri ≥  0, called cause coefficient. The cause coefficient ri indicates both presence of cause i, if non-zero, 
and its strength, such as contrast or concentration. Associated to each cause i there is a feature vector ui of 
dimension M. The observation μ is a linear combination of the feature vectors –causes– weighted by non-
negative cause coefficients ri and corrupted by noise (b). (c) A network of integrate-and-fire neurons with 
tuned inhibition implements dynamic, spike-based explaining away and solves a causal inference problem 
corresponding to quadratic programming with non-negativity constraints. Global inhibition (α term) and 
renormalized reset voltages (β term) implement L1 and L2 regularization, respectively.
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We consider a high-dimensional inference problem where an arbitrary combination of N causes can 
generate an observation (Fig. 1a). The observation is described by an “input” vector μ of dimension M 
(e.g., gray levels of an image with M pixels, or M-dimensional chemical composition of an odor), which 
is generated as a linear combination of causes corrupted by noise,

∑µ = + ,
( )=

ru
1i

N

i i
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where ui, i =  1, ..., N, are the “feature” vectors, which correspond to causes i =  1, ..., N respectively 
(Fig.  1b) (We typically reserve bold lower-case letters for column vectors and bold capital letters for 
matrices). We assume that the feature vectors have been learned and are thus known. The ith feature 
vector can be viewed as the representation of the ith cause (e.g., Gabor functions for an image, or the 
collection of chemicals with their relative concentrations that constitutes an odor percept). The feature 
vectors ui have length M, but the number of them, N, can be a priori much larger than M. The feature 
vectors are weighted by the cause coefficients {ri}, i =  1, ..., N, which are strictly non-negative, ri ≥  0. 
Additionally, the linear combination of features with non-negative coefficients is corrupted by independ-
ent Gaussian noise,  ∼ ( , )N 0 1i .

The cause coefficients {ri} are assumed to be non-negative to enforce the intuition that causes can be 
either present or not present, but they cannot be “negative”; namely, we do not consider causes as sinks 
for other causes, but we rather see them as quasi-independent objects in the world. In our setup, if the ith 
cause is not present, then the ith cause coefficient is zero, ri =  0. If the ith cause is present, then its cause 
coefficient ri becomes positive. The additional degree of freedom allowed for the positiveness of ri in the 
last case permits the encoding not only of the presence of the cause, but also its intensity. In other words, 
the larger the value of ri, the larger the intensity of cause i (e.g., the contrast of an object in the image, or 
the concentration of an odor). Both the non-negativity constraint of the coefficients and the linearity of 
the combination of the causes in Eq. (1) are well-justified in several relevant examples: (i) an image such 
as a face can be approximately described by a superposition of complex features, such as the color of the 
eyes, the shape of the nose, and so on21, and (ii) an odor is made of a positively-weighted superposition 
of more basic odorants27. As a concrete example, consider our internal representation of an odor mixture, 
like the one that we can smell during breakfast, as a combination of stored basic odors, such as coffee 
and pancakes. In this case, the input vector μ represents the input odor mixture, and the feature vectors 
ui represent more basic complex odor objects, such as coffee, pancakes, and so on. The non-negativity 
of the weighting coefficients ri enters naturally in this kind of problems because it is unconventional to 
describe any odor mixture as having negative contributions.

We assume that a priori, that is, in the absence of any observation, causes in the world are independ-
ent and rare, and take non-negative values following a truncated Gaussian
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where α ≥  0, β ≥  0 and H(x) is the Heaviside function (H(x) =  1 if x >  0, and H(x) =  0 otherwise). 
The latter ensures that cause coefficients can never be negative. This prior distribution over the causes 
includes as a special cases the Laplace prior (β =  0) and the truncated Gaussian centered at zero (α =  0).

Given the generative model for the input vector, Eq. (1), and the prior over the causes, Eq. (2), the 
joint probability distribution for both of them is
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where Uij are the entries of the M ×  N matrix U =  (u1, u2, .., uN), whose jth column is the vector uj. Using 
matrix notation, the joint probability distribution can be rewritten as

∏µ µ( , ) ∝ (− ( , )) ( ),
( )=

p L H rr rexp
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1

where we have defined the negative log-posterior function

 µ µ µ α
β
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Here, 1 is a vector with all entries equal to one, and superscript T denotes the transpose operator.
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Upon observing the input vector μ we want to use the generative model described above (Fig. 1a,b) 
to infer which were the causes that generated this input. The goal, therefore, is to find the minimum of 
the function L(μ, r) for a given μ. Discovering the cause coefficients r that minimizes this function cor-
responds to the maximum a-posteriori (MAP) estimate of r. Minimizing Eq. (6) with the non-negative 
constraint makes the problem non-linear, such that a simple matrix inversion is not sufficient to deter-
mine the optimal solution. This problem is also equivalent to a sub-class of quadratic programming 
problems with inequality constraints28.

Minimizing Eq. (6) is akin to finding a good approximation of the input vector as a linear combina-
tion of features with non-negative values,

∑µ ∼ .
( )=
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While the first term in the r.h.s. of Eq. (6) penalizes large differences between the input vector and this 
linear approximation, the second and third terms penalize large values of the coefficients rj per se. The 
last two terms can also be interpreted as L1 and L2 regularization terms, where α and β are the penalty 
coefficients.

Expanding quadratic terms in Eq. (6) and defining = −W U U and µ=h U , it is easy to verify that 
minimizing Eq. (6) over r at fixed μ is equivalent to minimizing the energy function

   α
β
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If the feature vectors are linearly independent, then = −W U U is negative definite, and as a conse-
quence the energy has an single minimum in the convex set ri ≥  0, i =  1, ..., N. If the feature vectors are 
linearly dependent, then W is negative semi-definite. In this case, the energy still has a single minimum 
if either α >  0 or β >  0, and otherwise multiple states r associated with the same minimal energy.

Solving the causal inference problem with a rate-based network. There exist various effi-
cient algorithms28 to minimize the loss function in Eq. (8) (or equivalently Eq. (6)). Here we build a 
single-layer rate-based network that minimizes this energy with non-negative firing rates (see [21] for a 
two-layer network implementation). In this network, as well as in the spiking network described in the 
next section, the number of neurons is usually designed to match the number of causes to be represented 
in the world. This is not a severe restriction on the neuronal architecture, as the network can easily incor-
porate situations in which hidden causes are overrepresented (i.e. encoded by a combination of multiple 
neurons) by selecting identical or very similar feature vectors for some neurons. In either case we assume 
that the rate ri of the ith neuron in the network follows the dynamics
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where wij =  (W)ij, W is as defined in Eq. (8) and [x]+ is the linear rectified function ([x]+ =  x if x ≥  0, and 
[x]+ =  0 otherwise). Like in many other functional networks, the connectivity W is symmetric5,9, although 
we show below that this assumption is not critical. The linear rectification enforces the constraint that 
rates are non-negative. This is because if the initial condition of the rates is in the non-negative orthant 
(ri ≥  0 for all i), then the trajectories remain confined to that region. We abuse notation by using r for 
both the firing rates of the network in this section and for the cause coefficients in the previous sections. 
The idea is that the firing rate of the network at the fixpoint corresponds to the most likely causes in 
Eq. (8), as shown next. We only consider the case in which the energy in Eq. (8) has a unique absolute 
minimum, albeit not necessarily in the non-negative orthant.

It can be shown that the dynamics defined in Eq. (9) acts to reduce the energy Eq. (8)
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for all r, and therefore performs gradient descent over the objective function29. Equality to zero only 
holds for the (unique) minimum of the energy restricted in the non-negative orthant. This implies that 
the dynamics in Eq. (9) approaches the minimum of the energy in Eq. (8) restricted in the non-negative 
orthant. This minimum, rMAP, which corresponds to the MAP estimate of the cause coefficients given the 
observation, obeys the system of non-linear equations
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This result will be important to show in the next section that a specific spiking network can minimize 
Eq. (8).

Solving the causal inference problem with a spike-based network. Based on the results derived 
for the rate-based network, in this section we build a network of integrate-and-fire neurons that solves 
the quadratic programming problem with non-negativity constraints defined in Eq. (8). Previous work 
has dealt with a similar quadratic programming problem23 in a network of explicitly leaky neurons, to 
derive a greedy, dynamic solution, based on an argument of dynamic loss minimization. We, instead, 
use a different approach to derive the exact steady-state solution for our problem in the low-leak regime. 
We first consider a network of N leaky integrate-and-fire neurons with arbitrary network connectivity, 
and later tune it to perform causal inference in our problem. The membrane voltage Vi of neuron i in 
the network follows

( )∑ ∑τ
= − + − + .
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dV
dt
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12
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m j
ij

l
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Here, τm is the membrane time constant of the neuron, Jij is the connection strength between pre-synaptic 
neuron j and post-synaptic neuron i, t j

l is the time of the lth spike of neuron j, ( − )k t tij j
l  is the synaptic 

response to that spike and gi is the input synaptic drive.
Neuron i emits a spike whenever its voltage reaches a threshold value Θ , after which the voltage is 

reset to a hyperpolarized value Hi <  Θ . This reset is implemented by a self-inhibitory current

δ= −Θ + , ( ) = ( ) ( )J H k t t 13ii i ii

in Eq. (12), where δ(t) is the delta-function. In other words, a spike of neuron i causes its voltage to 
instantaneously drop from the threshold value Θ  to the reset value Hi.

For i different from j, the synaptic kernel kij(t) corresponds to a brief synaptic current in neuron i 
generated by a spike from neuron j. This kernel is zero when t <  0 and, for convenience, we assume that 
it integrates to one,

∫ ( ) = . ( )
∞

dt k t 1 14ij
0

Although our results are valid for arbitrary kernels, we typically use exponential synaptic kernels 
kij(t) =  exp(− t/τs)/τs, for t >  0 with realistic time constants of 3–10 ms.

When the input drive is large, the leak term is dominated by both external and recurrent inputs, and 
therefore the dynamics can be well approximated by a network of non-leaky integrate-and-fire (nLIF) 
neurons,
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Such large input drives are expected to occur when the network is in the balanced regime, and/or when 
external inputs to the networks are large and supra-threshold. For this network, we are interested in 
determining the firing rate for each neuron in the long run. To compute these firing rates, we first inte-
grate both sides of Eq. (15) from 0 to T to obtain30

∫ ( )∑ ∑( ) − ( ) = − + .
( )

V T V J dt k t t T g0
16

i i
j

ij

T

l
ij j

l
i0

The integral involves terms that can be expressed as
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where nj(T) is the spike count of neuron j from time 0 up to time T. The residual term δnj(t) (0 ≤  δnj(t) ≤  1) 
arises from the fact that kij(t) has finite width in time (if i ≠ j).

For long enough integration window T, the terms in Eq. (16) scale differently with time, and this 
scaling depends on the firing state of the cell. If, on one hand, neuron i is active in the long run, then 
the term Vi(T) −  Vi(0) is O(1), while the two terms in the r.h.s. scale with O(T). If, on the other hand, 
neuron i is inactive, then the term Vi(T) −  Vi(0) is O(T) and negative because a net inhibitory current 
into the cells causes its voltage to drift to very negative values. These two sets of conditions can be com-
bined into a self-consistency system of equations for the time-averaged firing rates (defined as 
( ) ≡ ( )/r T n T Ti i

av )31,
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This equation states that if the total average input current into a neuron (argument of the rectified 
function) is negative, then its firing rate (i.e., spike count over a long time) is zero. If the input current 
is positive, then the firing rate is positive (note that Jii is negative). The linear rectification function guar-
antees that these two conditions hold simultaneously.

Now we can see that the self-consistency equation for the time-averaged firing rates of the spike-based 
network, Eq. (18), is identical to the unique solution of the firing rate in the rate-based network, Eq. (11), 
if the connectivity matrix J and external currents g of the nLIF network in Eq. (15) are set as

 β β= − ≡ − − , ( )J W U U 19

µα α= − ≡ − , ( )g h U 11 20

where  is the identity matrix. The connectivity matrix specifies both the neuron-to-neuron connectivity 
as well as the reset voltage for each neuron. Specifically, the off-diagonal entries of J determine the neu-
ron to neuron connectivity, while the diagonal entries Jii determine the reset voltage. More precisely, the 
relationship between the reset voltage of neuron i and Jii is given by

β= Θ + = Θ − − . ( )H J u 21i ii i
2

It is noteworthy that the effect of L1 and L2 regularization is to introduce a global inhibitory term pro-
portional to α (Eq. (20)) and to lower the reset voltage by β (Eq. (21)), respectively. Therefore, the roles 
of L1 and L2 regularization are different in terms of their expected effects on population activity: while 
L1 makes responses sparser, L2 lowers responses uniformly without changing sparsity, as shown later.

With the above choices the time-averaged firing rates of the network obey the equation
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This equation is identical to Eq. (11), which corresponds to the minimum of the energy in Eq. (8) in the 
non-negative orthant. Therefore, the time-averaged firing rates of the spiking network defined in Eqs. 
(8)–(19)–(20) represent the MAP causes given the observation (Fig.  1c). Although the theory that we 
have described only applies exactly to nLIF networks, we will show through simulations below that LIF 
networks behave similar to nLIF neurons with α >  032.

For the particular case in which the synaptic kernels are delta-functions, the spiking network follows 
the dynamics

β α= ( − ) ( ) + − , ( )
d
dt

tV W k h 1 23

where V is the vector of the neurons’ membrane voltages, and δ( ( )) = ∑ ( − )t t tk i l i
l . For analytical 

continuity reasons, the delta-functions should be understood in the following sense: an excitatory input 
spike from neuron j to neuron i depolarizes the voltage of the latter by an amount Jij, and if this quantity 
exceeds threshold the excess is added to the reset voltage after the spike. Finally, note that although using 
delta-functions as synaptic kernels simplifies notation, they are not necessary to minimize Eq. (8), and 
we typically use exponential synaptic kernels with realistic time constants of 3–10 ms in most of our 
numerical examples.

Dynamic, spike-based explaining away as underlying algorithm. We have shown that a tuned 
nLIF network can solve a high-dimensional causal inference problem that corresponds to quadratic pro-
gramming with non-negativity inequality constraints. Can we dissect the dynamics of the network and 
understand what is the underlying algorithm used to solve this problem? Not surprisingly, we find that 
the network solves the minimization problem in Eq. (8) by explaining away, implemented dynamically 
through spikes. To see how this works, first we rewrite the time-averaged firing rate for neuron i in Eq. 
(22) as

∑ µ β α= ( . )
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where we have used Jij =  − ui.uj −  βδij and grouped terms proportional to ui. The term within the inner 
brackets is the reconstruction error of the input vector μ based alone on the activity of all the neurons 
except neuron i. If this error is zero, then the firing rate of neuron i would be zero: that is, the activity 
of other neurons ‘explains away’ the stimulus and there is no need to recruit the activity of new neurons 
to approximate the stimulus. If the error is non-zero, then the firing rate of neuron i is approximately 
the projection of the error onto the feature vector ui, that is, proportional to how similar the error is to 
the feature vector encoded by neuron i. The network performs these operations dynamically through 
specifically spike-based tuned inhibitory interactions until the optimal solution is found.

Accurate and rapid causal inference in demanding tasks. The theory presented above does not 
specify how quickly and robustly our spiking networks reach the steady state. In particular, the presence 
of very slow transients could make convergence to the fixpoint extremely slow. Therefore, it is important 
to test their performance in a few relevant demanding tasks. While, in principle, truly different tasks 
would involve changing and learning the prior distribution over the causes, here we simply define task 
as a specific type of input configuration while keeping fixed the prior distribution over causes. We show 
in this section that our spiking network can exactly (1) discriminate a cause among a multitude of others 
with just a handful of spikes, (2) identify the components of a complex mixture, and (3) approximate 
an odd input vector. We first test whether the network can identify a single cause out of many potential 

Figure 2. The spiking network solves efficiently a hard discrimination task in a few spikes (top row), 
identifies all the components of a complex mixture (middle) and finds the closest causes to an odd 
observation (bottom). Schematics for the three tasks are shown on the left. The causes that need to be 
identified are marked with the same color than the panels on their right. For instance, in the classification 
task, the input vector is proportional to feature vector j (j =  10) and this is the cause that has to be identified. 
(a) Distribution of overlaps between feature vectors, centered at around 0.75 (Methods). (b) Response of 
the spiking network upon stimulation with the 10th cause. Only the neuron that encodes the cause used as a 
input (the 10th neuron) is active after a brief transient consisting of a handful of spikes from other neurons. 
(c) Angular error decays to close to zero in about 100 ms (T =  20 ms time windows). Inset: percentage 
error (see Methods) decays to zero as the integration window T increases. (d,g) Population activity of the 
network stimulated by a strong cause buried under a strong random background (d) or by an input vector 
that cannot be exactly represented by the feature vectors (g). (e,h) Distribution of firing rates. (f) Observed 
firing rate of the spiking network vs. the components of the mixture. The spiking network finds the mixture 
of features that composes the input vector. Inset: percentage error decays to zero as integration window T 
increases. (i) Observed firing rate of the spiking network vs. the rate predicted from a non-spiking algorithm 
for the same problem (rate-based network algorithm) in the approximation task. Inset: percentage error 
decays to the minimum (optimum) value as integration window T increases. In this case the error does not 
approach zero because in the approximation task the input vector is outside the convex hull formed by the 
set of all feature vectors.
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causes (one hundred potential causes, N =  100), and how fast it can do so. In addition to making the 
task high-dimensional, we made it difficult. This was accomplished by generating very similar causes, 
such that their associated feature vectors were strongly overlapping and therefore difficult to distinguish 
(Fig. 2a, average overlap ~0.75; Methods). Despite the high-dimensionality of the space of causes and the 
high similarity, the network was able to detect the presence of the correct cause: only the neuron that 
corresponded to the cause used as a stimulus was consistently active over time (Fig. 2b). As a result, the 
response of the network is very sparse, with just one neuron being active after a brief transient response. 
Importantly, convergence takes only a small number of spikes. On average, the network converges rapidly 
to the correct solution with a time scale smaller than 100 ms (Fig. 2c), corresponding to just a handful 
of spikes from neurons coding for other causes.

One potential caveat of our networks is that, after convergence to the correct solution, the voltage of 
inactive neurons becomes very large and negative due to the non-leaky nature of the network. This can be 
corrected by making cells adaptive by introducing a leak term whenever the stimulus intensity is below 
some criteria. Such an adaptive leak would support the recovery of the population activity to voltages 
close to reset values within stimulation periods.

Next, we study whether the spiking network can correctly identify all the components of a complex 
mixture of causes. The task is made difficult by combining a strong cause with a strong random combi-
nation of the remaining causes. This situation can correspond to the case in which an odorant, such as 
coffee (strong cause), is mixed with many other weak odorants, such as those arising from the cafe where 
we are having breakfast (strong background). In this case, spiking activity is distributed among the popu-
lation of neurons because causes encoded by many neurons are recruited to explain the stimulus mixture 
(Fig. 2d,e). In particular, the neuron that encodes the strong cause fires at the highest rate (Fig. 2d). We 
also confirmed that the solution attained by the spiking network corresponded to the actual mixture used 
(Fig. 2f) and that the solution converges with an increasing integration window (inset).

In a task in which the input vector does not correspond to any non-negative sum of the features 
vectors, the network must approximate the odd input to the closest features. In this approximation task, 
the activity of the network is sparse, with only a bunch of neurons being active throughout the stimu-
lation period (Fig.  2g,h). We confirmed that the solution attained by the spiking network corresponds 
to the optimal solution, as the network delivers the same set of approximating causes as a non-spiking 
algorithm for the same problem (Fig. 2i; see rate-based algorithm in Eq. (9)) and the solution converges 
to the minimum error with an increasing integration window (inset).

We also compared the behavior of the network with and without regularization terms in an overcom-
plete scenario, namely, in a case in which the dimensionality of the input vector was smaller than the 
number of features (Fig. 3). We stimulated the network with a single feature and studied its identification 
performance. We found that L1 regularization, implemented in our networks as global inhibition, creates 
a sparser representation of the input vector than the same network without L1 regularization (Fig. 3a,b). 
With L1 regularization, the network converges to the true input vector in just a few spikes (Fig. 3b), and 
the angular error decays to zero in a few hundreds of milliseconds (Fig.  3e). The reason for the 

Figure 3. Effects of regularization on population activity and performance in a network with 
an overcomplete basis of feature vectors. (a–d) Spiking activity for the standard network without 
regularization (a), with L1 regularization (b), L2 regularization (c), and voltage leak (d). In all cases input 
equals the 10th feature vector. (e) Angular error as a function of time (100 ms time windows).
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convergence is that in our simulations the stored feature vectors are normalized to the same length, 
=‖ ‖u 1j . In this case, L1 regularization always produces sparse representations of the stimulus vector if 

the stimulus coincides with one of the stored feature vectors. If stored feature vectors had unequal 
lengths, then the stimulation of one stored feature would have led to non-sparse firing. To make this 
clear, assume that due to the overcomplete representation of the stimulus space, the feature vector ui can 
be expressed as a sum of other feature vectors as = ∑ au ui j j j, with j ≠ i and aj ≥  0. If this is the case, 
there are at least two distinct activity patterns that can fully represent the stimulus μ =  ui: the first one 
is a sparse one that consists of a single neuron (neuron i) firing at rate ri =  1 Hz and all other neurons 
being inactive, while the second activity pattern is a non-sparse pattern where neurons fire at rate rj =  aj 
for all j ≠ i. However, given the equal normalization of all feature vectors, it is easy to see that ∑ ≥a 1j j , 
and therefore L1 regularization, which penalizes large total population activity, will favor the sparse over 
the dense pattern.

When L2 regularization is used instead of L1, the spiking density is reduced when compared to the 
un-regularized case, but the response is less sparse than with L1 regularization (Fig. 3c). Moreover, the 
angular error does not decrease over time (Fig.  3e). Therefore, L2 regularization, implemented in our 
networks in the form of a lower reset value, does not typically perform as well as L1, in the sense that in 
an identification task the angular error with L2 is larger than the one with L1. Similar results were found 
when we moved from a single-cause identification tasks to identifying mixtures of causes.

Interestingly, when instead of regularization, the spiking neurons are leaky, the network also finds 
correctly the input feature (Fig. 3d,e), at a speed comparable to the L1 regularized spiking network. This 
is because the leak term of the voltage introduces a negative current that on average is well approximated 
by the global inhibition characteristic of L1 regularization for the particular value α used. The similarity 
between leaky and non-leaky networks is compromised if the values of α are too small or large: too small 
α will lead to too weak sparsity due to weak global inhibition, while too large α will lead to too strong 
sparsity because too few neurons will fire.

Stimulus representation is stable over time despite large spiking variability. Our algorithm 
for performing causal inference for the problem in question relies on spike codes. The fact that this algo-
rithm encodes the causes in the neurons’ firing rates over the long run does not preclude the possibility 
that the functioning of the algorithm strongly depends on the dynamic coordination of spike timing 
between neurons. If our algorithm indeed relies on such a precise coordination, then its performance 
should be strongly compromised in the presence of spiking variability and noise, as these act on spike 
timing by shifting it. In the presence of large amounts of such spiking variability, as observed in cor-
tex33,34, the situation can only be worse, thus rendering any algorithm that relies on precise spike timing 
useless. Therefore, it is important to test the robustness of our spiking network against the presence of 
(i) spiking variability intrinsically generated by the neuronal dynamic and (ii) external sources of noise.

We first address the question of whether intrinsically generated spiking variability harms the per-
formance of our networks. To generate spiking variability intrinsically by neuronal dynamics, we cre-
ated a spiking network where the dimensionality of the stimulus was much lower than the number 
of neurons, M ≪  N. Because the N ×  N connectivity matrix J is a low rank matrix with rank M ≪  N, 
the neuronal dynamics offers a highly overcomplete representation of the input space and becomes a 
multi-dimensional attractor35. Without any regularization of the dynamics and in absence of noise, the 
corresponding rate-based network converges to a point on this multi-dimensional manifold attractor, 
determined by the initial conditions. The spike-based implementation can be interpreted as a noisy 
version of the rate-based network, such that the spiking network traverses the attracting manifold in a 
quasi-random walk, despite not having any truly stochastic component in its dynamics. In this scenario, 
which is specific to the overcomplete representation of inputs, the same stimulus can be faithfully repre-
sented by potentially many different activity patterns consisting of different sets of neurons being active 
and representing different combination of causes13. This representation can evolve over time, and the 
observed complex dynamics can be interpreted as variability. Our simulations show that, for each neu-
ron, firing is very irregular (Fig. 4a), with a broad distribution of high inter-spike-intervals (ISI) (Fig. 4b). 
The population averaged coefficient of variation of the inter-spike-intervals (CVISI) was CVISI =  3.20, 
larger than the one typically observed in sensory cortex33,34, but consistent with the larger variability 
found in prefrontal areas36. The presence of variability was robust to changes in the synaptic kernels 
used. When instead of using exponential kernels we used delta-function kernels with no delay or with 
2 ms delay, the network generated high variability with population averaged CVISI =  3.48 and CVISI =  2.89, 
respectively. The variability observed in larger networks of up to N =  500 cells (CVISI =  2.98) was also 
comparable to the variability observed in smaller networks of N =  100 cells (CVISI =  3.48). Despite the 
sheer irregular activity in the network, the encoding of the stimulus is fairly stable over time (Fig. 4c). 
A relatively stable decoding error of around 1deg is attained (Fig. 4d, blue line). Therefore, the spiking 
network is able to represent a complex input pattern in a reliable way over time in spite of intrinsically 
generated spiking variability.

We also asked whether the networks behavior was robust to perturbations of the optimal connectivity 
described in Eq. (19). This question is important because it is possible that very small deviations of the 
optimal architecture might have large effects on performance. This was indeed what happened when 
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we perturbed the optimal values of the network connectivity in Eq. (19) by adding a component with 
a value that was independent across contacts and uniformly distributed in the range between − 0.1 and 
0.1: a network with this size and type of mistuned connectivity became typically unstable because a few 
eigenvalues of the connectivity matrix become positive. However, this connectivity perturbation can be 
viewed as too strong because it destabilizes the whole network dynamics, leaving very little room for 
the possibility of performing any useful computation. Homeostatic and synaptic learning mechanisms 
exist that might aid the stability of a network37 and can be implemented efficiently by inhibitory synap-
tic plasticity38. Such strong inhibition, which is characteristic of balanced networks, finds experimental 
support39,40. Following this idea, instead of perturbing the network connectivity by zero-mean noise, we 
perturbed the connectivity by adding i.i.d. perturbation with a sufficiently large negative mean (− 0.1; 
uniformly distributed in the range between − 0.2 and 0) to all the entries of the connectivity matrix. In 
the presence of this negative bias in the unturned connectivity the network remained stable and, inter-
estingly, featured a performance (Fig. 4d, brown line) that was very much like the tuned network (blue).

We furthermore confirmed that the performance of the mistuned network did not substantially worsen 
(it was actually slightly improved in relation to the brown line in Fig. 4d) when we used delta-function 
kernels with delay (2 ms) instead of the more realistic exponential kernels that we have used so far. 
Interestingly, the observed small degradation of performance in both types of mistuned networks com-
pared to optimal networks contrasts with the large change of the values in the connectivity matrix (Eq. 
(19)), which incur an on average 75% change from their optimal values. Similar robustness to perturba-
tions have been found previously in other spiking networks with comparable architecture14.

The precision of irregularly spiking networks is as high as that of perfectly regular spiking 
networks. One important question is how precise stimulus encoding is in the presence of high spiking 
variability. While the angular error converges to zero in regularly spiking networks at finite integration 
windows (Fig. 2c), the angular error does not decay to zero in irregularly spiking networks (Fig. 4d). Is 
this difference real, or does it just depend on the finite size of the integration windows used to estimate 
firing rates? As in the analyses of Fig. 4 we were using finite windows, there is the possibility that regu-
larly and irregularly spiking networks appear to feature different decoding errors simply because it is 
more difficult to reliably estimate the firing rate in small integration windows when the spiking is highly 
variable. If this is the case, using a larger integration window T to estimate these rates should make these 

Figure 4. Input information is faithfully represented over time in spite of large spiking variability.  
(a) Population spiking activity over time (b) Distribution of ISIs of a representative neuron. (c) The estimate 
of the stimulus (jagged line) reproduces the true stimulus (blue) and is stable over time. First component of 
the estimate and stimulus are shown (100 ms time windows). (d) The angular error is stable over time for 
both a perfectly tuning (blue) and a mistuned (brown) network (500 ms time windows). (e) Angular error 
(inset: percentage error) as a function of the integration window T. (f) Log-log plot of the previous panel. 
Angular error (blue line) is tightly fit by a line with slope − 1.04 (black; almost invisible as it is overlaid by 
the data). An ideal population of cells firing independently with Poisson statistics would produce a slope of 
− 1/2. This prediction is plotted (red) for comparison. The left-most point for this Poisson prediction was 
made equal to the observed networks performance fit for visual comparison.
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estimates more reliable, such that both approaches can be compared on an equal footing. Even in a reg-
ularly spiking network for long integration windows T, a spike of the periodic cycle can be missed, 
resulting in an error of the firing rate estimate of the order of 1/T. If irregular firing in our simulations 
results in deterioration of information beyond that caused by unreliable rate estimate, we should observe 
an error that decays more slowly than 1/T. In particular, if firing were Poisson and independent across 
neurons, we would expect that the decoding angular error would scale at the slower pace / T1  for long 
T. We computed the decoding angular error as a function of T (Fig. 4e) and plot it in a log-log scale to 
study its scaling behavior (Fig. 4f, blue line). The log error decayed linearly as a function of the log of T 
with a slope very close to − 1 (− 1.04 ±  0.01; 95% confidence interval), showing that the error approxi-
mates 1/T. When we used percentage error (see Methods) instead of angular error we also found that 
the error decays monotonically towards zero, as expected from our theory. Therefore, a highly variable 
spiking network shows a decoding performance that is as good as one would expect from a network that 
spikes perfectly regularly, and much better than the performance expected from Poisson-firing networks 
(Fig. 4f, red line). Interestingly, this seems to be a general property that has already been observed before 
in related computing spiking networks with comparable architecture14.

Slow firing rate covariations of activity underlies reliable stimulus encoding. So far we have 
confirmed that our spiking network performs causal inference with high accuracy even when there are 
internally generated sources of variability. Now we turn to the second question: Is our spiking algorithm 
robust against external sources of noise? To answer this question, we compared a network with no input 

Figure 5. Slow firing rate covariations underlie reliable encoding. (a,b) Population activity patterns over 
time for a noiseless (black dots), weak-noise (red) and strong-noise (green) network. The noiseless network 
is identical in the two panels but represented at two different time resolutions. Networks only differ in the 
injected noise variance, while other parameters including initial conditions are identical (Methods).  
(c) Angular error as a function of time for the three networks (100 ms time window). (d) Angular error as a 
function of time for the noiseless network (black line) and for trial- (light blue) and bin- (dark blue) shuffled 
networks. When the slow covariations of firing rate are destroyed by the shuffling, performance largely 
deteriorates compared to the one of the noiseless network.
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noise (reproduced in Fig. 5a,b, at two different time resolutions; black dots) to networks in which weak 
(red) or strong (green) noise was injected.

When a very small amount of noise was externally injected into the network, spike times were notably 
shifted compared to those of the noiseless network (Fig. 5a, black and red dots). Despite this significant 
spike time perturbation, there was virtually no difference between the reconstruction angular errors 
in the noiseless and weak-noise networks (Fig.  5c, black and red lines). When the injected noise was 
increased 30-fold, both spike timing and population activity patterns were remarkably different when 
compared to those in the noiseless network (Fig. 5b, black and green dots). However, surprisingly, there 
was only a modest increase in the reconstruction angular errors when compared to the noiseless net-
work (Fig. 5b, black and green lines), which was much smaller than expected from the observed large 
differences in activity patterns (Fig.  5b). These results show that our spiking network is robust against 
external sources of noise, and seem to argue, perhaps more importantly, that precise timing does not play 
an important role in the encoding and functioning of the network.

If spike timing does not play an important role in the encoding of the stimulus and the underlying 
causes, where is the information encoded? The theory and analysis described above clearly indicates that 
the relevant variables for the encoding of the causes are the neurons’ firing rates (spike counts over a 
long integration window). But where is information encoded when the integration window is not very 
large? Is the coordination of the firing rates across neurons required in this case? If the coordination of 
firing rate is important for encoding information at small time windows, then we predict that the recon-
struction error should increase if we perturb this coordination at that temporal resolution. One way to 
perturb the coordination among cells without destroying the firing statistics of each individual cell is to 
build artificial population responses from real ones as follows41: a long sequence of trials of population 
responses are generated, and artificial population responses are built by shuffling neural responses across 
trials while keeping neuron identity intact. In this way, artificial population responses are formed by 
responses of neurons that have not been observed together in the same trial. As predicted, when the 
coordination of responses were perturbed in this way, the reconstruction angular error was much larger 
in the trial-shuffled than in the original network (Fig. 5d, black and light blue). Moreover, when we shuf-
fled bins of 100 ms within the same trial, while keeping neuron identity intact, the error also increased 
significantly (Fig. 5d, dark blue).

There is an interesting difference in the way the error decays over time when comparing trial-shuffled 
and bin-shuffled errors. This difference emerges because, as shown in Fig. 5c, the error on average decays 
with time, indicating that the network response is still in the transient period before stabilization. If trials 
are shuffled while maintaining neuron identity, the resulting populations of neurons are initially in rather 
different states because of the difference in initial conditions, causing the error to be comparatively larger 
at the onset of the trial period. However, at later times in the trial, the network state becomes more simi-
lar across trials because it is closer to the steady-state, resulting in smaller errors at later times when shuf-
fling trials. This time-dependent modulation of the error does not arise when shuffling bins within a trial, 
because mixing early with later bins in the trial causes the error to be indistinguishable over time within 
a trial. Overall, the above analysis demonstrates that, at finite temporal resolution, firing rate covariations 
rather than precise spike timing, are responsible for encoding the stimulus and the underlying causes.

Comparison with other spiking networks for related causal inference problems. Our spik-
ing network is related, at the generative, algorithmic and implementation levels, to other neuronal net-
works for causal inference. At the generative level, our networks assume that there are a collection of 
latent causes weighted by non-negative numbers, representing both the presence and the intensity of the 
cause. This is identical to the assumption underlying non-negative matrix factorization (NMF) and the 
rate-based networks that have in the past been proposed for this problem21. In contrast to networks called 
Boltzmann machines, we assume a graded presence of causes that is encoded by non-negative intensities, 
whereas Boltzmann machines only allow for binary states in the world (cause present or not present) that 
are represented by binary-state networks5. More recent spiking networks have included the possibility of 
representing both the presence and the intensity of a cause by adding a separate non-negative intensity 
variable for each binary-state variable25. One significant difference to these is that our spiking network 
encodes both the presence of a cause and its intensity in the same latent variable, rather than encoding 
presence and intensity separately.

At the algorithmic level, our spiking network delivers the most likely (MAP) estimate of the causes 
given the observation using fully deterministic dynamics. This full determinism contrasts with the way 
Boltzmann machines operate5: samples of the probability distribution of the causes given the observa-
tions are generated by stochastic dynamics of such networks. As a result, the network samples causes that 
are most consistent with the stimulus. Similarly, a large family of rate-based and spiking networks have 
been recently discussed that operate under probability sampling algorithms17,24,25. We have mentioned 
above that the spiking dynamics of our overcomplete networks can be understood as a form of random 
walk. Naively, this might seem to imply that spikes in such a network can be viewed as samples of a 
probability distribution. However, this conceptualization is not accurate in our system: in reality, spikes 
are better conceptualized as ‘votes’ in favor of a cause. Initially the dynamics is highly competitive, with 
potentially several neurons emitting votes to support their ‘cause’. Spike-votes tend to inhibit other neu-
rons in a highly competitive dynamics, implementing dynamic explaining away. This form of hard-logic 
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stands in contrast to the soft-logic frameworks above mentioned, and might allow realizing deterministic 
symbol manipulations that could be deemed closer to human reasoning.

At the implementation level, our network computes with spikes, while large parts of research address-
ing causal inference have focused on rate-based implementations. One reason why rate-based networks 
have been favored is because they simplify mathematical analysis, typically rendering analytical results. 
Spike-based networks, in contrast, typically lack a mathematical foundation that allows analytical results. 
The spiking networks that we have described in this paper can be considered an exception in this regard, 
as exact solutions for the steady state of spiking networks, to our knowledge, have not been known so 
far. Using a recently developed framework31, we have been able to show that integrate-and-fire cells 
with a specifically tuned architecture and global inhibition are able to solve exactly and efficiently a 
high-dimensional causal inference problem. Another advantage of using spikes rather than rates is that in 
rate-based networks the non-negativity of neurons’ firing rate is enforced by adding linear rectification to 
the input currents (Eq. (9)). The resulting firing rates (i.e., spike counts divided by time) in spiking net-
works are by definition non-negative, allowing for a natural neuronal implementation of non-negativity 
inequality constraints.

More recently, a spiking network for the tracking of complex time-varying signals has been devel-
oped14. This network is similar to ours in that it is spike-based, and therefore falls into the class of 
biophysically plausible networks to solve causal inference problems. As our network, it has the goal of 
minimizing the squared error between actual and reconstructed stimuli. Therefore, it is not surprising 
that signal-tracking networks14, spike-based networks for approximate quadratic programming23 and 
other previous rate-based network for quadratic programming problems21,22,42 share network architec-
tures that are very similar to ours (Eqs. (19)–(20)). The main difference to our networks lies at the 
details of the algorithm employed. While signal-tracking networks and versions thereof14,23 use a greedy 
minimization algorithm that, spike by spike, tries to minimize the reconstruction error in short time 
windows, our networks use a global algorithm that aims at finding the minimum in the long run.

This difference in algorithms is also reflected in a difference in the details of the implementation. First, 
signal-tracking networks mostly require instantaneous inhibition to operate efficiently. This is because 
inhibition is in charge of immediately suppressing the firing of other neurons once a particular neuron 
that represents the stimulus is active, to avoid over-representing the stimulus. Our networks, in contrast, 

Figure 6. Performance of spiking networks for quadratic programming with optimal and suboptimal 
parameters. (a–d) Population activity patterns over time for optimal networks (no leak present) without  
(a, opt w/o) and with synaptic delays (b, opt w), and for suboptimal networks (leak present) without  
(c, subopt w/o) and with such delays (d, subopt w/o). (e) The optimal network matches the optimal solution. 
Observed firing rate of the spiking network vs. the rate predicted from a non-spiking algorithm for the same 
problem (rate-based network algorithm) for the networks displayed in panels (a–d). Color code is the same 
as the first row. Dark green dots are overlaid by light green dots, and therefore they are invisible.  
(f) Percentage error decays to zero as a function of the integration window T for optimal networks, but 
not for signal-tracking networks. (g) Log-log plot of the previous panel. The percentage error decays 
approximately as 1/T for the optimal network, and saturates for the signal-tracking network. (h) Angular 
error as a function of the integration window T.
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do not require instantaneous inhibition: exponential synaptic kernels, or even delta-kernels with a delay, 
can be safely added to the dynamics and the network still operates efficiently (see Figs  2 and 6). This 
is made possible by considering the steady-state solution instead of a greedy, dynamic loss minimizer. 
Second, signal-tracking networks usually operate with leaky integrate-and-fire cells. Neurons in cortex 
feature such a leak, such that leaky networks can be considered more realistic than pure non-leaky net-
works. As we have shown in Fig. 3, the effect of leak in our network approximately implements L1-norm 
regularization. However, in general, the presence of leak makes deriving the steady-state solution of the 
system intractable, such that the exact computations underlying this solution remain elusive. Another 
upside of our non-leaky network is the integration of information without any information loss31, which 
is crucial for optimal functioning. The importance of using non-leaky networks for optimal computations 
have also been recently recognized in updated versions of signal-tracking networks43 and in networks for 
stable representation of memories13. In this work43, the authors have relaxed the instantaneous inhibition 
requirement of signal-tracking networks by using alpha function synapses. This makes their optimal net-
work parameters depend on the shape of the synaptic kernel, while our optimal solution does not have 
to obey such dependency. Third and finally, the way L1 regularization is implemented in the network 
dynamics differs in signal-tracking networks and our networks: while signal-tracking networks imple-
ment L1 through an increase of both the spiking threshold and reset voltage, our networks implement 
L1 through global inhibition. While such a simultaneous increase of threshold and reset voltages can be 
realized by global inhibition when the network is leaky, this mapping becomes impossible for non-leaky 
networks. Furthermore, in some network implementations of signal-tracking networks14, the parameters 
values for L1 and L2 regularization substantially differ from those of our network (Eqs. (19)-(20)). In 
summary, focusing on the steady-state solution in non-leaky networks allowed us to solve the quadratic 
programming problem already considered in23 by spiking networks with significantly less constraints on 
synaptic kernels and a different implementation of L1 and L2-norm regularization.

Although the difference in parameters between signal-tracking and our causal inference spiking net-
works might seem minor, the two networks behave rather differently. This difference is to be expected 
because the networks implement different minimization algorithms, as mentioned above. To illustrate 
their different behavior, we chose delta-function kernels to allow a better comparison of the performance 
of these two types of networks. While signal-tracking networks have been found to show impressive 
performance in some tasks, here we compared their performance to our optimal networks in one of 
simple tasks that we have studied so far: mixture identification (Fig. 6a–d). For this case, the only archi-
tectural difference between the two types of networks is the presence or absence of leaks in the network. 
Additional differences are expected to arise when using regularization, which we do not consider in this 
simple example. When both our optimal network and signal-tracking networks have no synaptic delays, 
few neurons become active throughout the stimulation period (Fig. 6a,c). The population responses of 
the two networks are similar, but while our optimal network finds all components in the mixture (Fig. 6a; 
features number 10, 20, 30 and 40 weighted by different coefficients), the signal-tracking network tends 
to miss weak features that were presented in the stimulus (Fig. 6c; see the lack of activity of neurons 30 
and 40). In the presence of synaptic delays, the optimal network undergoes a transient with many neu-
rons firing initially, followed by a silence period that develops into a sparse population response where 
only neurons that fully identify the mixture are active (Fig. 6b). With synaptic delays, the signal-tracking 
network also features a transient period, but the final response is denser that in our network (Fig. 6d vs. 
b). The optimal network without or with delays finds the exact mixture of features that was used as input 
(Fig.  6e, green dots), but the suboptimal, signal-tracking network does not find the optimal solution 
(Fig.  6e, red and orange dots). Interestingly, we have also found that, despite slower convergence, our 
network still finds the optimal solution when the delay duration is significantly increased (e.g. 10 ms, v.s. 
the 2 ms used in Fig. 6). When the percentage reconstruction errors are compared across networks and 
conditions, we found that for optimal networks the error decayed over time approximately as 1/T, while 
the error saturated for the signal-tracking network (Fig.  6f,g). Similar results were observed when the 
reconstruction angular error was used (Fig. 6h).

At last we would like to re-emphasize that the above comparison is not meant to demonstrate that our 
networks will out-perform signal-tracking networks in all tasks. Its only purpose was to show that the 
deceptively small difference in network architecture between the two types of networks has significant 
consequences on their performance.

Discussion
A spiking network that performs causal inference over a probabilistic domain has been described and 
analyzed. We have demonstrated that a selectively tuned network of integrate-and-fire neurons can deliver 
the set of most likely causes given a noisy observation of a linear combination thereof with non-negative 
coefficients. This problem involves a high-dimensional quadratic optimization with non-negativity ine-
quality constraints that cannot be solved by linear networks. We have shown that our networks find the 
most likely causes using dynamic, spike-based explaining away by suppressing irrelevant causes when 
the observation can already be explained. The network design is remarkably straight-forward: network 
dynamics is based on linear synapses with realistic time scales, and uses the neurons’ spike-generating 
mechanism and reset as the only non-linearities. With this straight-forward hardware the spiking network 
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can discriminate a cause among a multitude of other similar causes in just a few spikes. When confronted 
with a complex mixture of causes, the network can exactly and efficiently determine all the components 
of the mixture. The network is robust against internal and external sources of variability, as well as against 
connectivity mistuning. Information about the causes is encoded in the slow covariations of the firing 
rate of individual neurons, not in the individual firing rates separately or in the precise spike timing.

In perceptual and cognitive psychology, ‘explaining away’ is a hallmark of perceptual Bayesian infer-
ence and causal reasoning2,3 (see [5,26] for previous network implementations). Consider the example of 
trying to establish the cause for, one morning, observing a wet pavement. Potential causes could be that 
it rained overnight, or that a gardener has recently watered a park nearby. You look at the park, and see 
that there is a hose. Then, you will immediately imagine that it was a gardener who caused the pavement 
to be wet, discounting evidence for the possibility that it rained overnight. Therefore ‘gardener’ explains 
away the observations ‘wet pavement’ and ‘hose’. Our networks perform these type of computations with 
remarkable ease: a large set of causes dynamically compete for dominance through spike-based recurrent 
inhibition until a subset of them best explain the observation and suppress all other causes, resulting in 
the emergence of dynamic, spike-based explaining away. But how could a network like the one we have 
described in practice solve problems like the one just mentioned above? One can conceive a two-neuron 
network where the two causes, gardener and rain, are represented by features (1, 1) and (1, 0), respec-
tively. Then an ambiguous input to the network representing wet pavement can be given to the network, 
represented by vector (2, 1). This input vector causes the two neurons to be active with equal firing rates, 
such that the network represents both gardener and rain. However, if the input to the network changes to 
(2, 2) to represent the additional observation hose, then the neuron encoding gardener will remain the 
only active neuron, explaining away rain. Therefore, the sum of observations does not result in a sum of 
causes; instead, it results in suppression of explained away causes.

So far we have assumed in our framework that the features have already been learned. In many 
relevant conditions, however, the features still need to be learned. Non-local learning rules for similar 
problems have been derived before and are applicable to rate-based implementations21. Local learning 
rules for linear problems have recently derived, and result in a combination of feed-forward Hebbian 
learning and anti-Hebbian learning that mediates the competition between the encoding neurons44 in 
rate-based networks. How to extend these learning frameworks to spike-based networks is still unclear, 
as it would require any form of communication, including learning, to be spike-based. First steps in this 
direction have already been performed45 and it might be possible that a comparable approach would also 
work for the particular problem we are considering. Another open problem is how task learning can be 
efficiently performed in spiking networks that learn prior distributions over the presence and intensity 
of causes. Our networks have partial flexibility to learn such priors, as both the reset voltage and the 
strength of global inhibition represent aspects of the probability of observing causes, but the plasticity 
rules that might govern learning in such cases remain to be investigated.

An important contribution of our work is to study the impact of spiking variability on network per-
formance. Neurons in cortex fire in a variable way to repeated presentations to the same stimulus33,34 and 
this variability is correlated across cells46,47. Although variability appears to be harmful, especially when 
seen at the single-cell level, a recent study has shown that it does not limit sensory information31. First, 
the results presented here confirm those findings, as we have found that our networks encode sensory 
variables with high accuracy despite large amounts of variability (Fig.  4a). Second, and perhaps more 
importantly, we have gone one step further by showing that large mistuning in the connectivity matrix 
did not substantially limit network function, as long as the network was dynamically stable (Fig.  4d). 
Previous work has demonstrated that neuronal networks are robust against noise and mistuning of net-
work parameters13,14, and our network reproduces this observation. This result, which holds even when 
mistuning was large, is by no means obvious as a mistuned network implements explaining away only in 
a loose manner. This observation suggests that explaining away might turn out to be a canonical compu-
tation that can be robustly implemented in a large repertoire of spiking networks.

Finally, it is important to highlight that high-dimensional causal inference requires a multi-dimensional 
network with many neurons that represent many potential causes. This fact precludes simplification of 
the network dynamics using standard mean-field techniques48 or other dimensionality reduction tech-
niques, and warns research aiming at oversimplifying theoretical and experimentally measured neuronal 
dynamics to a few dimensions. The relevance of our theoretical network analysis consists in part in being 
able to solve analytically a large recurrent spike-based network with realistic synaptic dynamics. This 
allowed us to build the exact objective function of the system and map it to a causal inference problem. 
If we had reduced our spiking network to a small number of dimensions in neuronal space, we would 
have not been able to understand phenomena such as dynamic, spike-based explaining away in our net-
works. All in all, although additional realism needs to be added to the neuronal dynamics and harder 
problems need to be addressed, our results represent a concise example of how biophysically plausible 
spiking neuronal networks can perform exactly hard causal inference problems.
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Methods
Simulations and numerical procedures. Simulations were performed using custom C code. 
Simulations were typically run for 100–1000 s with a one-step Euler method and a time step of 0.01 ms. 
We typically used exponential synaptic kernels kij(t) (i ≠ j),

τ
( ) = ( )

( )

τ− /

k t t eH
25ij

t

s

s

where H (t) is the Heaviside step function. We typically used τs =  5 ms. We also used delta-functions 
(τs =  0 ms, instantaneous inhibition) in some simulations.

Parameters. Parameters for simulations are specified in Table 1. In Fig. 2 we used the following fea-
ture and input vectors. Entries of the feature vectors were independently and identically distributed 
(i.i.d.) uniformly in the interval [0, 1], followed by normalization to one, =‖ ‖u 1j 2

. The connectivity 
matrix in the spiking network was generated using these feature vectors using Eq. (19), and hence was full 
rank. While network connectivity was kept intact in the three tasks, we chose the input vector differently 
for each task. In the discrimination task (Fig. 2, first row), the input vector was 50 times the 10th feature 
vector. In the mixture identification task (second row), the input vector was 50 times the 10th feature 
vector plus a background consisting of a sum of the remaining feature vectors with amplitudes i.i.d. 
uniformly in the interval [0, 10]. The background was constant throughout the trial. In the approxima-
tion task (third row), the first component of the input vector took value 1000 while the remaining com-
ponents were set to zero. This vector lies with probability one outside the conic hull for the feature 
vectors generated as described above, and therefore it cannot be exactly expressed as a linear combina-
tion of the feature vectors weighted by non-negative coefficients.

In Fig. 3 we used a basis of feature vectors with entries i.i.d. following a uniform distribution in the 
interval [− 0.5, 0.5] followed by normalization to one. We used M =  10 and N =  100 to create an over-
complete basis and to better study the effects of regularization on neuronal activity.

In Fig. 4, the jth feature vector has component i equal to π= ( ( − )/ )u i j Ncos 2j
i . Because the feature 

vectors correspond to a basis of shifted cosines, the feature vectors effectively form a highly overcomplete 
basis. Hence the connectivity matrix obtained from these features vectors using Eq. (19) is low rank. The 
input vector was 50 times the 10th feature vector. The optimal connectivity matrix was corrupted by 
frozen noise by adding an i.i.d. component to each entry uniformly distributed in the interval [− 0.2, 0] 
(brown line in Fig. 4d). As feature vectors are normalized to one, the perturbation on the connectivity 
matrix was substantial, corresponding on average to a 75% change in the entry values from the optimal 
values.

For Fig. 5 we took the optimally tuned network of Fig. 4 and added i.i.d. (time-varying) white noise 
to each neuron in the network with variances 0, 0.01 and 0.3.

In Fig. 6 (panels a,b) we used a basis of feature vectors with entries i.i.d. following a uniform distri-
bution in the interval [0, 1], followed by normalization to one, as in Fig. 2. The input vector was a linear 
combination of features 10, 20, 30 and 40 with coefficients 50, 50, 5 and 1, respectively. No background 
was added. Specifically in this simulations, we used delta-functions as synaptic kernels (τs =  0), with zero 
or 2 ms delays (in all other simulations exponential kernels were used). The signal-tracking network in 
Fig. 6 (panels c,d) had exactly the same architecture and synaptic kernels as the optimal one but neurons 
were LIF with reset voltage H =  − 0.5 and spiking threshold Θ  =  0.5 (the same values can be chosen also 

Parameter Value Description

N 100 number of neurons, and number of features

M 100, 10 (Fig. 3), 2 (Fig. 4) dimensionality of input vector

τm ∞, 50 ms (Fig. 3), 20 ms (Fig. 6c,d) membrane time constant

τs 5 ms, 0 ms (Fig. 6; 0 or 2 ms delays) synaptic time constant

Θ 1, 0.5 (Fig. 6c,d) threshold voltage

H 0, − 0.5 (Fig. 6c,d) reset voltage

α 0, 10 (Fig. 3) L1 regularization coefficient

β 0, 0.5 (Fig. 3) L2 regularization coefficient

U M ×  N matrix feature vector matrix

μ M ×  1 vector input vector

Table 1.  Parameter values. Default values are shown first. Figures where alternative values are used are 
indicated. None of the results depend critically on the exact values of the parameters.
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for the non LIF network, and the results do not change because only the different between threshold 
and reset voltages matters).

Reconstruction errors were averaged across trials with different initial conditions (n =  200). Initial 
voltages for the neurons were randomly and uniformly sampled in the interval from reset to thresh-
old voltages. The angular error is defined as the angle, averaged over trials, between the input vector  
(e.g. μ ∝  u10) and the reconstructed input vector, Ur (Eq. (1)), where r are the estimated rates from the 
spiking network computed in time windows of size T. Fixed or varying sizes of the window T are used 
depending on the simulation and are indicated in each figure caption. When the term integration win-
dow is used, the origin of the time window is always at time zero. When the error is plotted over time, 
a moving window of fixed size is used. The (percentage) error is defined as 100 times the Euclidean 
distance, averaged over trials, between the input vector (μ) and the reconstructed input vector, Ur (Eq. 
(1)) (where r are the estimated rates from the spiking network computed in windows of size T, chosen 
as before) divided by the (Euclidean) length of the input vector. Error bars on the errors correspond to 
s.e.m. (n =  200).
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