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Abstract

Successful behavior in the real world critically depends on discovering the latent structure behind the volatile inputs
reaching our sensory system. Our brains face the online task of discovering structure at multiple timescales ranging
from short-lived correlations, to the structure underlying a scene, to life-time learning of causal relations. Little is known
about the mental and neural computations driving the brain’s ability of online, multi-timescale structure inference. We
studied these computations by the example of visual motion perception owing to the importance of structured motion
for behavior. We propose online hierarchical Bayesian inference as a principled solution for how the brain might solve
multi-timescale structure inference. We derive an online Expectation-Maximization algorithm that continually updates an
estimate of a visual scene’s underlying structure while using this inferred structure to organize incoming noisy velocity
observations into meaningful, stable percepts. We show that the algorithm explains human percepts qualitatively and
quantitatively for a diverse set of stimuli, covering classical psychophysics experiments, ambiguous motion scenes, and
illusory motion displays. It explains experimental results of human motion structure classification with higher fidelity
than a previous ideal observer-based model, and provides normative explanations for the origin of biased perception in
motion direction repulsion experiments. To identify a scene’s structure the algorithm recruits motion components from
a set of frequently occurring features, such as global translation or grouping of stimuli. We demonstrate in computer
simulations how these features can be learned online from experience. Finally, the algorithm affords a neural network
implementation which shares properties with motion-sensitive cortical areas MT and MSTd and motivates a novel class of
neuroscientific experiments to reveal the neural representations of latent structure.
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Figure 1: Explaining perception of structured motion as online hierarchical inference. (a—e) Generative model of structured
motion. Our online algorithm inverts the generative model to simultaneously identify the underlying structure and to decompose
observed velocities into (latent) motion sources. See main text for details. (f—h) Demonstration of the algorithm by the example of
the Duncker wheel. (f) The Duncker wheel is a rolling wheel with only two visible point lights at the hub and rim. (g) Like humans,
the algorithm discovers a shared component for both lights (pink) and an individual component for the rim light (dark green). (h)
The lights’ velocities are decomposed into joint rightward motion and rim light-rotation. Brightness =time. (i—1) Classification task
of ambiguous motion scenes, analyzing behavioral data from [9]. (i) Human confusion matrix when classifying ambiguous motion
scenes as Independent, Global, Clustered, and Hierarchically nested motion. (j) Confusion matrix of the algorithm on the same trials
as [9]. The algorithm quantitatively explains human percepts and even captures the fine-structure in the confusion matrix. (k) For
this, we fed the value of A at trial end into a logistic regression classifier (trained on the ground truth, not human responses), and
fitted the same choice model as [9], who had employed the ideal posterior on the full input trajectory. (1) Log-likelihood of human
responses under both models. Our algorithm explains human responses better for every participant. The results in panels (j) and (1)
are cross-validated.

Introduction

Real-world scenes feature rich spatial and temporal structure. Understanding this structure allows humans and animals
to make sense of their environment by organizing complex and often ambiguous sensory input streams into stable,
meaningful percepts. The emerging compressed representations benefit goal-directed actions and decision making. While
machine learning algorithms have been developed to infer the structure of large datasets offline [1], an understanding of
how biological agents discover structure online is only beginning to emerge [2].

We studied online structure inference across multiple timescales by the example of visual motion perception. Motion
structure, that is, statistical relations in velocities, carries essential information about the spatial and temporal evolution of
the environment. For instance, the features composing an object typically move coherently, or self-motion adds optic flow
to all observable velocities in a scene. To benefit behaviors such as navigation, tracking, prediction, and pursuit, the visual
system must decompose observable velocities, v:, (see Fig. 1a) into their putative latent origins, e.g., the observer’s self-,
shared flock-, and each bird’s individual motion (Fig. 1b).

Bayesian inference has provided a successful normative framework for understanding human visual motion perception in
spatially constrained (local) patches [3, 4] and for simple structures [5, 6]. For structured motion spanning multiple objects,
larger areas of the visual field, and longer timescales, however, a comprehensive theoretical description is only beginning
to emerge. Recent work [7] has introduced tree structures for the mental organization of observed velocities into nested
hierarchies, yet the inference process over structures had to be performed by a biologically unrealistic offline sampling
algorithm. Theory-driven experiments have revealed that the human visual system makes use of hierarchical structure
when solving visual tasks [8], and that aspects of motion structure perception can be explained by Bayesian structural
inference [9], yet the algorithms underlying the structure discovery remained elusive.

We address the questions of how the visual system solves the chicken-and-egg problem of parsing motion in a scene in real
time while simultaneously inferring the scene’s underlying structure, and how the involved probabilistic computations
can be performed by neural circuits. We propose an online Expectation-Maximization (EM) algorithm which leverages the
fact that instantaneous motion (e.g., the speed and direction of flocking birds) and a scene’s structure (e.g., the presence of
a flock) evolve on different timescales. We demonstrate that the derived algorithm replicates a range of psychophysics
experiments both qualitatively and quantitatively. Further, we present an implementation of the algorithm by recurrent
neural networks, which feature connection and response properties of cortical areas implicated in visual motion processing,
and propose a targeted experiment to test model predictions in neural recordings. Finally, we explore how the set of



typical motion components, such as shared motion or grouping, which the algorithm draws upon when explaining the
structure of a scene, could be learned from experience on long timescales, rather than being given to it as a parameter.

Part of this work has been posted as a pre-print, https://www.biorxiv.org/content/10.1101/2021.10.21.
465346v1, which presents the derivations and results in detail. The simulation results on online learning of the motion
components are a new contribution.

Online hierarchical inference in a generative model of structured motion.

We build on the generative model of structured motion from [8] in which observable velocities, v;, are generated from
latent causes, s;. The so-called motion sources, s;, can have volatile speed and direction, and usually respect a temporally
more robust, tree-shaped motion structure: in Fig. 1c, graph connectivity defines how sources (nodes in the graph) affect
observable objects (black object outlines), and vertical edge length, called motion strength, A,,, indicates the long-term
average speed of the associated source, s,,. Sources are a-priori assumed to evolve as Ornstein-Uhlenbeck processes
in each spatial dimension (Fig. 1d, only 1 dim. shown) leading to stationary distributions, s,,, ~N (O, %/\fn) Observed
velocities, v;, are noisy versions of the sum of all ancestral sources in the graph with graph connectivity represented by
the component matrix, C (see Fig. 1d & e for illustration of 3 flocking birds). For most of the following, we assume that the
component matrix, C, is given and fixed, e.g., because it has been learned from experience.

We derived an online EM algorithm for simultaneously inferring estimates of the sources, s;, and of the underlying
structure, A, from a stream of observations, v; (assuming that time-constants and observation noise are fixed parameters).
Note that, with the component matrix, C, given, the motion structure is fully defined by A. The derivation exploits
the different timescales of typical changes in s, (volatile, E-step) and X (stable, M-step). With mild approximations, we
obtained:
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Here, pu and fy are the posterior parameters of p( s, | vo. ) =N (ps, diag[fs(A?)]), © denotes elementwise multiplication,
o and 3 stem from a sparsity-inducing prior on A?, ||¢,,||? is the norm of C’s mth column, and we require that 7, > .
As common for online EM, eqn. (1) + (2) define a coupled dynamical system. Intuitively, the algorithm measures the
range in which the motion sources vary, (s?), to estimate the structure parameters, A7, during the M-step in eqn. (1). At
the same time, during the E-step in eqn. (2), the system’s expected input, Cp,, leads to prediction errors, €;, which are
projected into the domain of sources, C7 €;, and gated by fs(A?) for credit assignment. The E-step performs the velocity
decomposition conditioned on the scene’s structure which is inferred during the M-step. This is, to our knowledge, the first
online inference model of Bayesian motion structure perception.
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Figure 2: The model captures human motion direction repulsion and supports a neural implementation. (a—e) Simulations
of motion direction repulsion. (a) Motion direction repulsion is a systematic bias in the perceived angle between the motion of two
groups of dots moving linearly in an aperture. (b) We endowed the model with self-, shared and group motion (yellow, pink, and
green), as well as a noisy vestibular input signaling the observer’s stationarity. (c) The algorithm replicates the biphasic opening
angle-dependence of the bias measured by [10]. (d & e) We further make testable predictions for varying contrast (d) and speed (e)
of the 2nd dot group. (f) Recurrent network model implementing the online algorithm. (g) Proposed experiment to measure neural
representations of latent structure. Moving dots in several apertures follow our generative model (top). Different trials use different
fractions of shared and individual motion (bottom). (h) The model predicts that the fraction of shared motion in the stimulus can be
read out by a linear regression model (ved points) which was only trained on a subset of trials (blue points).
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The algorithm explains experiments of human motion perception

Due to limited space, we here only present results on the Duncker wheel (Fig. 1f —h), motion structure classification of
ambiguous scenes (Fig. 1i-1; data from [9]), and biased perception known as motion direction repulsion (Fig. 2a—e; data
from [10]). How the algorithm replicates and explains these experiments is detailed in the figure captions.

Neural network model and proposed neuroscience experiment

Egs. (1) and (2) rely on only linear and quadratic operations (by adding €, as a represented auxiliary variable). Following a
derivation similar to [11], who showed how up-to-quadratic dynamics of computational variables can be implemented by
recurrent rate-based networks, we devised a network model with biologically realistic neural interactions to implement
the inference algorithm. The network architecture is shown in Fig. 2f. The network represents (inferred) motion strengths,
A7, and motion source means, p, in a linear population code. The only variable not fitting into this framework is the
square-root function in fx, which is thus represented by a dedicated neural population. The full derivation of the model
and a demonstration of its ability to implement the inference algorithm are provided in the bioRxiv preprint.

Motivated from the network model, we propose a new class of theory-driven neuroscience experiments to probe the
neural representations of latent structure. In each trial, moving dots, which follow the generative model from Fig. 1d&e,
are presented in several apertures, see Fig. 22g (top). Different trials use different fractions of shared and individual
motion, such that the expected dot speed, (v?) x A2, .q+ ALy, is held constant across trials, see Fig. 2g (bottom). The
network model encodes A? linearly in its neural activity, and thus predicts that the fraction of shared motion, defined
as A2 red / (Miared T A0q), can be read out by a linear regression model. As shown in Fig. 3h, a linear regression model

trained on two fractions (blue points) correctly reads out also other fractions (red points).

Learning of common motion components on long timescales

Could the motion components, C, be learned from observations in an unsupervised manner? We derived a learning rule
for the matrix elements, C,,, through gradient-based online EM. Since learning of the motion components, C, aims to
maximize the data likelihood beyond what could be explained by the sources, s;, and the scenes’ structures, A, learning
of C must evolve on long timescales. We think of it as lifetime learning of a set of features which commonly occur in
natural scenes. To keep the emerging components sparse and interpretable, we further have the freedom to impose a
regularizing prior, p(C), during learning. The full learning rule reads:
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This rule establishes the intuition to compare the observed covariance between inputs and inferred motion sources against

their expected covariance. Here, ¢ is a small learning rate, N weights the prior vs. the likelihood, and X;=diag [ Is ()\?)}
is the variance of the s-posterior.

In Fig. 3, we demonstrate, for the first time, online learning of hierarchically nested motion relations in a computer
simulation. Observed velocities are generated according to the model in Fig. 1d & e, with the nested graph structure
shown in Fig. 3a. The corresponding ground truth-component matrix is shown in Fig. 3b. At any time, a random subset
of the available components from Fig. 3b is present (average: 3 active components), and a new random structure is
drawn every 20s. For the learning system, the component matrix is initially empty, i.e., C(t=0) = 0, and we provide two



additional (empty) components to this matrix to test whether the algorithm finds a sparse, minimal solution. The system
evolves according to eqn. (1)—(3) for 100,000 s using the following regularizing prior:

| MoK 2 | MK
log p(C) o A > <Z|Cl€m|> A > 1Ckml - (4)

m=1 k=1

This prior facilitates motion components to remain small (L2 regularization of full components), and individual matrix
elements to be sparse (L1 regularization of C,,). Furthermore, we add small, zero-mean exploration noise in every time
step during learning.

At the end of the simulation, all components were correctly identified, see Fig. 3c. The time evolution during learning is
shown in Fig. 3d for all M =12 components. The orange lines denote the K =8 velocities (k=1: darkest). A horizontal gray
line marks C,, =0 (if visible). Global motion (m=1) and counter-rotation (m="7) are discovered quickly. The individual
components take more time.

Interaction of priors across timescales

All dynamic variables, that is, s, A, and C, are softly constrained by prior distributions. We briefly discuss the modeling
assumptions arising from those priors as well as how the priors interact with another. On the fasted timescale of the
generative model, the motion sources, s;, obey a Gaussian prior, p(s,,) = N (O, %)\fn) , which favors slow velocities and
is supported for modeling visual motion perception by experimental work [3]. On an intermediate timescale, motion
strengths, A, are governed by priors from the family of scaled inverse chi-squared distributions leading to the constants
a and B in eqn. (1). For this work, we employed two members of this family: for all allocentric motion of objects,
that is, every \,,, except self-motion, we chose the scale-free Jeffreys prior, p(\2,) o A,,2. This prior induces sparsity of
inferred motion structures by preferring vanishing motion components (A%, =0) and interacts with p(s,,) by setting its
variance. For self-motion, we chose a uniform distribution, p()\felf) = const., capturing that frequent saccades and other
eye movements give rise to fast retinal velocities for all observables, v;. On the longest timescale, motion components, C,
follow the regularizing prior of eqn. (4) which has been discussed earlier. Notably, in interaction with p(A?), this prior
resolves an invariance in the generative model: multiplying C' with any constant can be fully compensated by dividing A
by the same constant, thereby leaving p(v | A, C') unchanged. It is the exponential penalty on large components in p(C')
that counteracts the preference of A for small values, thereby leading to the (now unique) equilibria observed in Fig. 3d.

Conclusion

We have proposed a comprehensive theory of online hierarchical inference for structured visual motion perception. The
derived algorithm decomposes an incoming stream of retinal velocities into latent motion components which in turn are
organized in a nested, tree-like structure. A scene’s inferred structure provides the visual system with a temporally robust
scaffold to organize its percepts and to resolve momentary ambiguities in the input stream. Applying the theory to human
visual motion perception, we replicated diverse phenomena from psychophysics and made concrete predictions for new
experiments. The algorithm afforded a recurrent neural network model motivating targeted neuroscience experiments to
reveal the neural representations of latent structure. Finally, we demonstrated in a computer simulation that also the set of
motion components could be learned online from experience.
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