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Working memories are thought to be held in attractor networks in the brain. These
attractors should keep track of the uncertainty associated with each memory, so as to
weigh it properly against conflicting new evidence. However, conventional attractors do
not represent uncertainty. Here, we show how uncertainty could be incorporated into
an attractor, specifically a ring attractor that encodes head direction. First, we introduce
a rigorous normative framework (the circular Kalman filter) for benchmarking the
performance of a ring attractor under conditions of uncertainty. Next, we show that the
recurrent connections within a conventional ring attractor can be retuned to match
this benchmark. This allows the amplitude of network activity to grow in response
to confirmatory evidence, while shrinking in response to poor-quality or strongly
conflicting evidence. This “Bayesian ring attractor” performs near-optimal angular path
integration and evidence accumulation. Indeed, we show that a Bayesian ring attractor is
consistently more accurate than a conventional ring attractor. Moreover, near-optimal
performance can be achieved without exact tuning of the network connections. Finally,
we use large-scale connectome data to show that the network can achieve near-optimal
performance even after we incorporate biological constraints. Our work demonstrates
how attractors can implement a dynamic Bayesian inference algorithm in a biologically
plausible manner, and it makes testable predictions with direct relevance to the head
direction system as well as any neural system that tracks direction, orientation, or
periodic rhythms.

working memory | ring attractor networks | head direction neurons | Bayesian inference |
Kalman filter

Attractor networks are thought to form the basis of working memory (1, 2) as they can
exhibit persistent, stable activity patterns (attractor states) even after network inputs have
ceased (3). An attractor network can gravitate toward a stable state even if its input is
based on partial (unreliable) information; this is why attractors have been suggested as
a mechanism for pattern completion (4). However, the characteristic stability of any
attractor network also creates a problem: Once the network has settled into its attractor
state, it will no longer be possible to see that its inputs might have been unreliable. In this
situation, the attractor state will simply represent a point estimate (or “best guess”) of the
remembered input, without any associated sense of uncertainty. However, real memories
often include a sense of uncertainty, (e.g., refs. 5–7), and uncertainty has clear behavioral
effects (8–10). This motivates us to ask how an attractor network might conjunctively
encode a memory and its associated uncertainty.

A ring attractor is a special case of an attractor that can encode a circular variable
(11). For example, there is good evidence that the neural networks that encode head
direction (HD) are ring attractors (12–19). In a conventional ring attractor, inputs push
a “bump” of activity around the ring, with only short-lived changes in bump amplitude
or shape (20, 21); the rapid decay to a stereotyped bump shape is by design, and, as a
result, a conventional ring attractor network is unable to track uncertainty. However,
it would be useful to modify these conventional ring attractors so that they can encode
the uncertainty associated with HD estimates. HD estimates are constructed from two
types of observations—angular velocity observations and HD observations (11, 22).
Angular velocity observations arise from multiple sources, including efference copies,
vestibular or proprioceptive signals, as well as optic flow; these observations indicate
the head’s rotational movement and, thus, a change in HD (13, 18, 23, 24). These
angular velocity observations are integrated over time (“remembered”) to update the
system’s internal estimate of HD, in a process termed angular path integration. Ideally,
a ring attractor would track the uncertainty associated with angular path integration
errors. Meanwhile, HD observations arise from visual landmarks or other sensory cues
that provide information about the head’s current orientation (12, 16). These sensory
observations can change the system’s internal HD estimate, and once that change has
occurred, it is generally persistent (remembered). But like any sensory signal, these
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sensory observations are noisy; they are not unambiguous
evidence of HD. Therefore, the way that a ring attractor responds
to each new visual landmark observation should ideally depend
on the uncertainty associated with its current HD estimate. This
type of uncertainty-weighted cue integration is a hallmark of
Bayesian inference (25) and would require a network that is
capable of keeping track of its own uncertainty.

In this study, we address three related questions. First, how
should an ideal observer integrate uncertain evidence over time
to estimate a circular variable? For a linear variable, this is
typically done with a Kalman filter; here, we introduce an
extension of Kalman filtering for circular statistics; we call this
the circular Kalman filter. This algorithm provides a high-level
description of how the brain should integrate evidence over
time to estimate HD, or indeed any other circular or periodic
variable. Second, how could a neural network actually implement
the circular Kalman filter? We show how this algorithm could
be implemented by a neural network whose basic connectivity
pattern resembles that of a conventional ring attractor. With
properly tuned network connections, we show that the bump
amplitude grows in response to confirmatory evidence, whereas it
shrinks in response to strongly conflicting evidence or the absence
of evidence. We call this network a Bayesian ring attractor.
Third, how does the performance of a Bayesian ring attractor
compare to the performance of a conventional ring attractor?
In a conventional ring attractor, bump amplitude is pulled
rapidly back to a stable baseline value, whereas in a Bayesian
ring attractor, bump amplitude is allowed to float up or down
as the system’s certainty fluctuates. As a result, we show that a
Bayesian ring attractor has consistently more accurate internal
estimates (or “working memory”) of the variable it is designed to
encode than a conventional ring attractor.

Together, these results provide a principled theoretical founda-
tion for how ring attractor networks can be tuned to conjointly
encode a memory and its associated uncertainty. Although we
focus on the brain’s HD system as a concrete example, our results
are relevant to any other brain system that encodes a circular or
periodic variable.

Results

Circular Kalman Filtering: A Bayesian Algorithm for Tracking a
Circular Variable. We begin by asking how an ideal observer
should dynamically integrate uncertain evidence to estimate
a circular variable, specifically head direction φt . Additional
information being absent, the ideal observer assumes that
HD follows a random walk or diffusion on a circle: across
small consecutive time steps of size δt, the current HD φt is
assumed to be drawn from a normal distribution, φt |φt−δt ∼
N (φt−δt , δt/κφ) (constrained to a circle) centered on φt−δt
and with variance δt/κφ . This diffusion prior assumes smaller
HD changes for a larger precision (i.e., inverse variance),
κφ , and for smaller time steps, δt. Just like the brain’s HD
system, the ideal observer receives additional HD information
through HD observations zt and angular velocity observations,
vt (Fig. 1A). HD observations provide noisy, and thus unreliable,
measurements of the current HD drawn from a von Mises
distribution, zt |φt ∼ VM (φt , κzδt) (i.e., the equivalent to
a normal distribution on a circle), centered on φt , and with
precision κzδt. A higher precision κz means that individual HD
observations provide more reliable information about the current
HD. Angular velocity observations provide noisy measurement
of the current HD change φt − φt−δt drawn from a normal
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Fig. 1. Tracking HD with the circular Kalman filter. (A) Angular velocity
observations provide noisy information about the true angular velocity �̇t ,
while HD observations provide noisy information about the true HD �t .
(B) At every point in time, the posterior belief p (�t) is approximated by a
von Mises distribution, which is fully characterized by its mean �t (location
of distribution’s peak) and its precision/certainty parameter �t . Interpreted
as the polar coordinates in the 2D plane, these parameters provide a
convenient vector representation of the posterior belief (inset). (C) An angular
velocity observation vt is a vector tangent to the current HD belief vector.
Angular velocity observations continually rotate the current HD estimate;
meanwhile, noise accumulation progressively decreases certainty. (D) Each
HD observation zt is a vector whose length quantifies the observation’s
reliability. Adding this vector to the current HD belief vector produces an
updated HD belief vector. HD observations compatible with the current HD
estimate result in an increased certainty (i.e., a longer belief vector). (E) HD
observations in conflict with the current belief (e.g., opposite direction of the
current estimate) decrease the belief’s certainty. (F ) Multiple HD cues can be
integrated simultaneously via vector addition.

distribution, vt |φt ,φt−δt ∼ N
(
φt−φt−δt

δt , 1
κvδt

)
centered on the

current angular velocity and with precision κvδt. While higher-
precision measurements yield more reliable information, they
only do so about the current HD change rather than the HD
itself.

The aim of the ideal observer is to use Bayesian inference
to maintain a posterior belief over HD, p (φt |z0:t , v0:t) given
all past observations, z0:t and v0:t (25, 26). Assuming a belief
p (φt−δt |z0:t−δt , v0:t−δt) at time t − δt, the observer updates this
belief upon observing vt and zt in two steps. First, it combines
its a priori assumption about how HD diffuses across time
with the current angular velocity observation vt to predict φt
at the next time step t, leading to p (φt |z0:t−δt , v0:t). As both
the diffusion prior and angular velocity observations are noisy,
this prediction will be less certain than the previous belief it is
based on. (SI Appendix for formal expression.) Second, the ideal
observer uses Bayes’ rule to combine this prediction with the
current HD observation zt to form the updated posterior belief
p (φt |z0:t , v0:t). These two steps are iterated across consecutive
time steps to continuously update the HD belief in the light of
new observations.

The two steps are also the ones underlying a standard Kalman
filter (27, 28). However, while a standard Kalman filter assumes
the encoded variable to be linear, we here use a circular variable
which requires a different approach. Because filtering on a circle
is analytically intractable (29), we choose to approximate the
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posterior belief by a von Mises distribution, with mean µt
and precision κt , so that p (φt |z0:t , v0:t) ≈ VM (φt |µt , κt)
(Fig. 1B). Then, the mean µt , which we will call the HD
estimate, determines the peak of the distribution. The precision
κt quantifies the width of the distribution and, therefore, our
certainty in this estimate (larger κt = indicating higher certainty).
This approximation allows us to update the posterior over a
circular variable φt using a technique called projection filtering
(30, 31), resulting in,

µt = µt−δt +
(

κv

κφ + κv
vt +

κz

κt
sin (zt − µt)

)
δt, [1]

κt = κt−δt +
(
−

f (κt)
2 (κφ + κv)

+ κz cos (zt − µt)
)
δt. [2]

Here, f (κt) is a monotonically increasing nonlinear function
that controls the speed of decay in certainty κt (Methods). Eqs. 1
and 2 describe an algorithm that we call the circular Kalman filter
(31) (Methods/SI Appendix for a continuous-time formulation).
This algorithm provides a general solution for estimating the
evolution of a circular variable over time from noisy observations.

To understand the circular Kalman filter intuitively, it is
helpful to think of the observer’s belief as a vector in the 2D
plane (Fig. 1B), whose direction represents the current estimate
µt , and whose length represents the associated certainty κt . The
circular Kalman filter tells us how this vector should change at
each time point, based on new observations of angular velocity
and HD. Here, we outline the intuition behind the circular
Kalman filter, focusing on the HD system as a specific example.

Angular Velocity Observations. We can think of each angular
velocity observation as a vector that points at a tangent to
the current HD belief vector (Fig. 1C ) and rotates this belief
vector (first term in parenthesis on RHS of Eq. 1). Angular
velocity observations are noisy and, together with the diffusion
prior, decrease the belief’s certainty (κt ), meaning that the
observer’s belief vector becomes shorter (Fig. 1C ). Thus, when
angular velocity observations are the only inputs to the HD
network—i.e., when HD observations are absent—the HD
belief’s certainty κt will progressively decay, with a speed of decay
that depends on both κv and κφ (first term in parenthesis on
RHS of Eq. 2).

HD Observations. We can treat each HD observation as a vector
whose length κz quantifies the observation’s reliability (e.g., the
reliability of a visual landmark observation). This HD observation
vector is added to the current HD belief vector to obtain
the updated HD belief vector. The updated direction of the
belief vector depends on the relative lengths of both vectors.
A relatively longer HD observation vector, i.e., a more reliable
observation relative to the current belief’s certainty, results in
a stronger impact on the updated HD belief (Fig. 1D, second
term in parenthesis on RHS of Eqs. 1 and 2). In line with
principles of reliability-weighted Bayesian cue combination (25),
HD observations increase the observer’s certainty if they are
confirmatory (i.e., they indicate that the current estimate is
correct or nearly so, Fig. 1D). Interestingly, however, if HD
observations strongly conflict with the current estimate (e.g.,
if they point in the opposite direction), they actually decrease
certainty (Fig. 1E). This notable result is a consequence of the
circular nature of the inference task (32). It stands in contrast
to the standard (noncircular) Kalman filter, where an analogous
observation would always increase the observer’s certainty (33)

and is thus a key distinction between the standard Kalman filter
and the circular Kalman filter.

To summarize, the circular Kalman filter describes how a
nearly ideal observer should integrate a stream of unreliable
information over time to update a posterior belief of a circular
variable. This algorithm serves as a normative standard to judge
the performance of any network in the brain that tracks a circular
or periodic variable. Specifically, in the HD system, the circular
Kalman filter tells us that angular velocity observations should
rotate the HD estimate while reducing the certainty in that
estimate. Meanwhile, HD observations should update the HD
estimate weighted by their reliability, and they should either
increase certainty (if compatible with the current estimate) or
reduce it (if strongly conflicting with the current estimate). Note
that the circular Kalman filter can integrate HD observations
from multiple sources by simply adding all their vectors to the
current HD belief vector (Fig. 1F ).

Neural Encoding of a Probability Distribution. Thus far, we
have developed a normative algorithmic description of how an
observer should integrate evidence over time to track the posterior
belief over a circular variable. This algorithm requires the observer
to represent their current belief as a probability distribution on
a circle. How could a neural network encode this probability
distribution? Consider a ring attractor network where adjacent
neurons have adjacent tuning preferences so that the population
activity pattern is a spatially localized “bump.” The bump’s center
of mass is generally interpreted as a point estimate (or best guess)
of the encoded circular variable (12, 34). In the HD system, this
would be the best guess of head direction. Meanwhile, we let
the bump amplitude encode certainty so that higher amplitude
corresponds to higher certainty. Of course, there are other ways
to encode certainty—e.g., using bump width rather than bump
amplitude. However, there are two good reasons for focusing on
bump amplitude. First, as we will see below, this implementation
allows the parameters of the encoded probability distribution
to be “read out” in a way that supports the vector operations
underlying the circKF (Fig. 1C–F ). Second, recent data from the
mouse HD system show that the appearance of a visual cue (which
increases certainty) causes bump amplitude to increase; moreover,
when the bump amplitude is high, the network is relatively
insensitive to the appearance of a visual cue that conflicts with
the current HD estimate, again suggesting that bump amplitude
is a proxy for certainty (19, 35).

Formally, then, the activity of a neuron i with preferred HD
φi can be written as follows (Fig. 2A):

r(i)t = κt cos (φi − µt) + other components, [3]

where µt is the encoded HD estimate, κt is the associated
certainty, and the “other components” might include a constant
(representing baseline activity) or minor contributions of higher-
order Fourier components. Note that Eq. 3 does not imply
that the tuning curve must be cosine-shaped. Rather, it implies
that the cosine component of the tuning curve is scaled by
certainty. This is satisfied, for example, by any unimodal bump
profile whose overall gain is governed by certainty. A particularly
interesting case that matches Eq. 3 is a linear probabilistic
population code (36, 37) with von Mises-shaped tuning curves
and independent Poisson neural noise (SI Appendix, Fig. S1).

Importantly, this neural representation would allow down-
stream neurons to read out the parameters of the probability
distribution p (φt |z0:t , v0:t) in a straightforward manner. Specif-
ically, downstream neurons could take a weighted sum of the
population firing rates (i.e., a linear operation; Methods) to
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Fig. 2. A recurrent neural network implementation of the circular Kalman
filter. The HD belief vector (B; Fig. 1B) is the “vector representation” of
the HD belief (C), and the “phasor representation” (obtained from linear
decoding) of sinusoidal population activity (A; neurons sorted by preferred
HD �i ), here shown for HD estimate � = �/4 (shift of activity/density) and
different certainties � (height of activity bump in A/sharpness of distribution
in C). Using this duality between population activity and encoded HD belief,
the circular Kalman filter can be implemented by three network motifs
(D–F ). (D) A cosine-shaped input to the network (strength = observation
reliability �z) provides HD observation input. (E) Rotations of the HD belief
vector are mediated by symmetric recurrent connectivities, whose strength
is modulated by angular velocity observations. (F ) Decay in amplitude,
which implements decreasing HD certainty, arises from leak and global
inhibition. (G) Rotation-symmetric recurrent connectivities (here, neurons are
sorted according to their preferred HD) can be decomposed into constant,
symmetric, asymmetric, and higher-order frequency components (here dots).
(H) The dynamics of the Bayesian ring attractor implement the dynamics of
the ideal observer’s belief, as shown in a simulation of a network with 80
neurons. The network received angular velocity observations (always) and
HD observations (only in “visual cue” periods). (I) The Bayesian ring attractor
network tracks the true HD with the same accuracy (Top; higher = lower
average circular distance to true HD; 1 = perfect, 0 = random; Methods) as
the circular Kalman filter (circKF, Eqs. 1 and 2) if HD observations are reliable
and, therefore, more informative but with slightly lower accuracy once they
become less reliable, and therefore less informative. This drop co-occurs with
an overestimate in the belief’s certainty �t (Bottom). HD observation reliability
is measured here by the amount of Fisher information per unit time. The
accuracies and certainties shown are averages over 5,000 simulation runs
(Methods for details).

recover two parameters, x1 = κt cos (µt) and x2 = κt sin (µt).
This is notable because x1 and x2 represent the von Mises distri-
bution p (φt |z0:t , v0:t) in terms of Cartesian vector coordinates
in the 2D plane, whereas µt and κt are its polar coordinates
(Fig. 1B). Having them accessible as vector coordinates makes it
straightforward to implement the vector operations underlying
the circKF (Fig. 1 C–F ) in neural population dynamics. For
example, as we will see in the next section, the vector sum required
to account for HD observations in the circKF (Fig. 1 D and E)
can be implemented by summing neural population activity (36).
Overall, the vector representation of the HD posterior belief is
related to the phasor representation of neural activity (38), which
also translates bump position and amplitude to polar coordinates

in the 2D plane (Fig. 2B). If the amplitude of the activity bump
scales with certainty, the phasor representation of neural activity
equals the vector representation of the von Mises distribution
(Fig. 2 B and C ).

Neural Network Implementation of the Circular Kalman Filter.
Now that we have specified how our model network represents
the probability distribution p (φt |z0:t , v0:t) over possible head
directions, we can proceed to considering the dynamics of this
network—specifically, how it responds to incoming information
or the lack of information. The circular Kalman filter algorithm
describes the vector operations required to dynamically update
the probability distribution p (φt |z0:t , v0:t) with each new obser-
vation of angular velocity or head direction. In the absence of HD
observations, the circKF’s certainty decays to zero. By Eq. 3, this
implies that neural activity would also decay to zero, such that
a network implementing the circKF would not be an attractor
network. While we consider such a network in Methods, we here
focus on the “Bayesian ring attractor” which approximates the
circKF in an attractor network, thus establishing a stronger link
to previous working memory literature (1, 2). We describe the
features of this network with regard to the HD system, but the
underlying concepts are general ones which could be applied to
any network that encodes a circular or periodic variable. The
dynamics of the Bayesian ring attractor network are given by

drt = −
1
τ
rtdt − g (rt) · rtdt + W (vt) · rtdt + I extt , [4]

where rt denotes a population activity vector, with neurons
ordered by their preferred HD φi, τ is the cell-intrinsic leak time
constant,W (vt) is the matrix of excitatory recurrent connectivity
that is modulated by angular velocity observations vt , I extt is a
vector of HD observations, and g(·) is a nonlinear function that
determines global inhibition and that we discuss in more detail
further below. Let us now consider each of these terms in detail.

First, HD observations enter the network via the input
vector I extt in the form of a cosine-shaped spatial pattern whose
amplitude scales with reliability κz (Fig. 2D). This implements
the vector addition required for the proper integration of these
observations. Specifically, the weight assigned to each HD
observation is determined by the amplitude of I extt , relative to
the amplitude of the activity bump in the HD population.
Thus, observations are weighted by their reliability, relative to
the certainty of the current HD posterior belief, as in the circular
Kalman filter (Fig. 1 D and E). An HD observation that tends
to confirm the current HD estimate will increase the amplitude
of the bump in HD cells and, thus, the posterior certainty.

Second, the matrix of recurrent connectivity W (vt) has
spatially symmetric and asymmetric components (Fig. 2G). The
symmetric component consists of local excitatory connections
that each neuron makes onto adjacent neurons with similar
HD preferences. This holds the bump of activity at its current
location in the absence of any other input. The overall strength
of the symmetric component (wsym) is a free parameter which
we can tune. Meanwhile, the asymmetric component consists
of excitatory connections that each neuron makes onto adjacent
neurons with shifted HD preferences. This component tends
to push the bump of activity around the ring (Fig. 2E).
Angular velocity observations vt modulate the overall strength
of the asymmetric component (wasym(vt)), so that positive and
negative angular velocity observations push the bump in opposite
directions.
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Third, the global inhibition term,−g (rt) ·rt (Fig. 2F ), causes
a temporal decay in HD posterior certainty. Here, the function
g ’s output increases linearly with bump amplitude in the HD
population, resulting in an overall quadratic inhibition (Methods).
Together with the leak, this quadratic inhibition approximates
the nonlinear certainty decay f (κt) / (2(κφ + κv)) in the circular
Kalman filter, Eq. 2, that accounts for both the diffusion prior
“noise” 1/κφ and the noise 1/κv induced by angular velocity
observations, both of which are assumed known and constant.
The approximation becomes precise in the limit of large posterior
certainties κt .

With the appropriate parameter values, the amplitude of
the bump decays slowly as long as new HD observations are
unavailable, because global inhibition and leak work together to
pull the bump amplitude slowly downward (Fig. 2H ). This is by
design: The circular Kalman filter tells us that certainty decays
over time without a continuous stream of new HD observations.
This situation differs from conventional ring attractors, whose
bump amplitudes are commonly designed to rapidly decay to
their stable (attractor) states. In a hypothetical network that
perfectly implemented the circular Kalman filter, the bump
amplitude would decay to zero. However, in our Bayesian ring
attractor, which merely approximates the circular Kalman filter,
the bump amplitude decays to a low but nonzero baseline
amplitude (κ∗).

As an illustrative example, we simulated a network of 80
HD neurons (Methods). We let HD follow a random walk
(diffusion on a circle), and we used noisy observations of the time
derivative of HD (angular velocity) to modulate the asymmetric
component of the connectivity matrix W (vt). As HD changes,
we rotate the cosine-shaped bump in the external input vector
I extt , simulating the effect of a visual cue whose position on the
retina depends on HD. This network exhibits a spatially localized
bump whose position tracks HD, with an accuracy similar to
that of the circular Kalman filter itself (Fig. 2H ). Meanwhile,
the amplitude of the bump accurately tracks the fluctuating HD
posterior certainty in the circular Kalman filter, reflecting how
noisy angular velocity and HD observations interact to modulate
this certainty, Eq. 2. When the visual cue is removed, the bump
amplitude decays toward baseline (Fig. 2H ). In the limit of
infinitely many neurons, this type of network can be tuned
to implement the circular Kalman filter exactly for sufficiently
high HD certainties. What this simulation shows is that network
performance can come close to benchmark performance even
with a relatively small number of neurons (SI Appendix, Fig. S2).

Interestingly, when we vary the reliability of HD observations,
we can observe two operating regimes in the network. When
HD observations have high reliability, bump amplitude is high
and accurately tracks HD certainty (κt ). Thus, in this regime,
the network performs proper Bayesian inference (Fig. 2I ).
Conversely, when HD observations have low reliability, bump
amplitude is low but constant, because it is essentially pegged to
its baseline value (the network’s attractor state). In this regime,
bump amplitude exaggerates the HD posterior certainty, and the
network looks more like a conventional ring attractor. We will
analyze these two regimes further in the next section.

Bayesian vs. Conventional Ring Attractors. Conventional ring
attractors (1, 12, 39) are commonly designed to operate close to
their attractor states, so that bump amplitude is nearly constant.
This is not true of the Bayesian ring attractor described above,
where bump amplitude varies by design. The motivation for
this design choice was the idea that, if bump amplitude varies

with certainty, the network’s HD estimate would better match
the true HD, because evidence integration would be closer to
Bayes-optimal. Here, we show that this idea is correct.

Specifically, we measure the average accuracy of the network’s
HD encoding for different HD observation reliabilities for both
the Bayesian ring attractor and a conventional ring attractor. We
vary the HD observation information rate from highly unreliable,
leading to almost random HD estimates (circKF inference
accuracy close to zero in Fig. 3B), to highly reliable, leading
to almost perfect HD estimates (circKF inference accuracy close
to one), respectively. To model a conventional ring attractor,
we use the same equations as we used for the Bayesian ring
attractor, but we adjust the network connection strengths so
that the bump amplitude decays to its stable baseline value
very quickly (Fig. 3A). Specifically, we strengthen both local
recurrent excitatory connections (wsym) and global inhibition
(g (rt)) while maintaining their balance, because their overall
strengths are what controls the speed (β) of the bump’s return
to its baseline amplitude (κ∗) in the regime near κ∗, assuming
no change in the cell-intrinsic leak time constant τ (Methods).
With stronger overall connections, the bump amplitude decays
to its stable baseline value more quickly. We then adjust the
strength of global inhibition without changing the local excitation
strength to maximize the accuracy of the network’s HD encoding;
note that this changes κ∗ but not β. This yields a conventional
ring attractor where the bump amplitude is almost always fixed
at a stable value (κ∗), with κ∗ optimized for maximal encoding
accuracy. Even after this optimization of the conventional
ring attractor, it does not rival the accuracy of the Bayesian ring
attractor. The Bayesian attractor performs consistently better,
regardless of the amount of information available to the network,
i.e., the level of certainty in the new HD observations (Fig. 3B).

This performance difference arises because the conventional
ring attractor does not keep track of the HD posterior’s certainty.
Ideally, the weight assigned to each HD observation depends
on the current posterior certainty, as well as the reliability of
the observation itself (Fig. 3C ). A conventional ring attractor
will assign more reliable observations a higher weight but does
not take into account the posterior certainty. By contrast,
the Bayesian ring attractor takes all these factors into account
(Fig. 3C ). The Bayesian ring attractor’s performance drops to
that of the conventional ring attractor only once HD observations
become highly unreliable. In that regime, the Bayesian ring
attractor operates close to its attractor state and thus stops
accurately tracking HD certainty, making the attractor–network
approximation to the circKF most apparent. Effectively, it
becomes a conventional attractor network.

To obtain more insight into the effect of bump decay speed
(β) on network performance, we can also simulate many versions
of our network with different values of β, which we generate by
varying the overall strength of balanced local recurrent excitatory
(wsym) and global inhibitory connections (g (rt)). We in turn
vary the overall strength of global inhibition in order to find
the best baseline bump amplitude (κ∗) for each value of β. The
network with the best performance overall had a slow bump decay
speed (low β), as expected (Fig. 3 D and E). While it featured
similar performance to the Bayesian ring attractor, it had slightly
different β and κ∗ parameters. This is because the Bayesian
ring attractor was analytically derived to well approximate
the circKF for sufficiently high certainties, whereas the “best
network” was numerically optimized to perform well on average.
As the bump decay speed β increased further, performance
dropped. However, this could be partially mitigated by increasing
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A C E

F

DB

Fig. 3. Ring attractors with slow dynamics approximate Bayesian inference. (A) The ring attractor network in Eq. 4 can be characterized by fixed point
amplitude �∗ and decay speed �, which depend on the network connectivities. Thus, the network can operate in different regimes: a regime, where the bump
amplitude is nearly constant (“conventional attractor”), a regime where amplitude dynamics are tuned to implement a Bayesian ring attractor, or a regime
with optimal performance (“best network,” determined numerically). (B) HD estimation performance as measured by inference accuracy as a function of the
HD observation information rate (as in Fig. 2I). �∗ for the “conventional” attractor was chosen to numerically maximize average accuracy, weighted by a prior
across HD information rates (Inset/Methods). (C) The weight with which a single observation contributes to the HD posterior belief varies with informativeness
of both the HD observations (Fisher information for 10-ms observation) and the current HD posterior (weight 1 = HD observation replaces HD estimate; 0 = HD
observation leaves HD estimate unchanged). The update weight of the Bayesian attractor is close to optimal, visually indistinguishable from the circKF; not
shown here, but SI Appendix, Fig. S3. Fisher information per 10-ms observation is directly related to the Fisher information rate, and the vertical red bar shows
the equivalent range of information rate shown in panel B. (D) Overall inference performance loss (compared to a particle filter; performance measured by
average inference accuracy, as in B, 0%: same average inference accuracy as a particle filter, 100%: random estimates), averaged across all levels of observation
reliability (Methods) as a function of the bump amplitude parameters �∗ and � (only for �∗ > 0 and � > 0 as infinite network weights arise otherwise). (E)
Simulated example trajectories of HD estimate/bump positions of HD estimate/bump positions (Top) and certainties/bump amplitudes (Bottom). The Bayesian
ring attractor (not shown) is visually indistinguishable from the circKF and best network. (F ) Relative performance (Top; 100% = inference accuracy without
neural noise; performance measured as in panel D) and signal-to-noise ratio (Bottom; average �t divided by �t SD due to neural noise) drop with increasing
neural noise (noise SD for additive noise in the network of 64 neurons). Retuning � and �∗ to maximize performance (purple vs. light blue = optimal parameters
for noise-free network, panel D) reduces the drop in inference accuracy and S/N.

baseline bump amplitude (κ∗) to prevent overweighting of new
observations.

We have seen that a slow bump decay (low β), i.e., the ability
to deviate from the attractor state, is essential for uncertainty-
related evidence weighting. That said, lower values of β are
not always better. In the limit of very slow decay (β → 0),
bump amplitude would grow so large that new HD observations
have little influence rendering the network nearly “blind” to
visual landmarks. Conversely, in the limit of fast dynamics
(β →∞), the network is highly responsive to new observations;
however, it also has almost no ability to weight those new
observations relative to other observations in the recent past. In
essence, β controls the speed of temporal discounting in evidence
integration. Ideally, the bump decay speed β should be matched
to the expected speed at which stored evidence becomes outdated
and thus loses its value, as controlled by κφ and κv.

To summarize, we can frame the distinction between a conven-
tional ring attractor and a Bayesian ring attractor as a difference
in the speed of the bump’s decay to its stable state. In a
conventional ring attractor, the bump decays quickly to its stable
state, whereas in a Bayesian ring attractor, it decays slowly. Slow
decay maximizes the accuracy of HD encoding because it allows
the network to track its own internal certainty. Nonetheless,
reasonable performance can be achieved even if the bump’s decay
is fast because a conventional ring attractor can still assign more
informative observations a higher weight; it simply fails to assign
the current HD estimate its proper weight.

The Impact of Neural Noise on Inference Accuracy. So far, we
have assumed that the only sources of noise in our network are

noisy angular velocity and HD observations. However, biological
networks consist of neurons that are themselves noisy, resulting
in another source of noise (40). What is the impact of that noise
on inference accuracy?

If the network contains a sufficient number of similarly tuned
neurons, their noise can be easily averaged out (37, 41), so that
neural noise does not have a noticeable impact on the accuracy
of inference. That said, for smaller networks, like those of insects
(42), neural noise might significantly decrease inference accuracy.
Indeed, simulating a network of 64 noisy neurons shows that,
once the noise becomes sufficiently large, inference accuracy
drops to below 70% of its noise-free value (Fig. 3F ).

To better understand how neural noise perturbs inference,
we derived its impact on the dynamics of the HD estimate
µt and its certainty κt (SI Appendix). The derivations revealed
that, irrespective of the form of the neural noise (additive,
multiplicative, etc.), this noise has two effects. First, it causes
an unbiased random diffusion of µt and, thus, an increasingly
imprecise memory of the HD estimate. Second, it causes a
positive drift and random diffusion of κt , which, if the drift is not
accounted for, results in an overestimation of one’s certainty and
thus overconfidence in the HD estimate. These results mirror
previous work that has shown a diffusion of µt in ring attractors
close to the attractor state (41). We here show that such a diffusion
persists even if the network operates far away from the attractor
state, as is the case in our Bayesian ring attractor. While it is
impossible to completely suppress the impact of neural noise, the
derivations revealed that we can lessen its impact by retuning
the network’s connectivity strengths. Indeed, doing so reduced
the drop in inference accuracy by about 35% when compared
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to the network tuned to optimize noise-free performance (Fig. 3
D and F ) and also boosted the network’s signal-to-noise ratio
(Fig. 3F ). Lastly, our derivations show that the impact of noise
vanishes once the network’s population size becomes sufficiently
large, in line with previous results (41). For example, increasing
the network size four-fold would halve the effective noise’s SD
(assuming additive noise, SI Appendix). Overall, we have shown
that neural noise causes a drop in performance that can in part
be mitigated by retuning the network’s connectivity strengths or
by increasing its population size.

Tuning a Biological Ring Attractor for Bayesian Performance.
Thus far, we have focused on model ring attractors with
connection weights built from spatial cosine functions (Fig. 2G)
because this makes the mathematical treatment of these networks
more tractable. However, this raises the question of whether
a biological neural network can actually implement an ap-
proximation of the circular Kalman filter, even without these
idealized connection weights. The most well-studied biological
ring attractor network is the HD system of the fruit flyDrosophila
melanogaster (Fig. 4A) (17), and the detailed connections in this
network have recently been mapped using large-scale electron
microscopy connectomics (42). We therefore asked whether the
motifs from this connectomic dataset—and, by extension, motifs
that could be found in any biological ring attractor network—
could potentially implement dynamic Bayesian inference.

To address this issue, we modeled the key cell types in
this network (42–44) (HD cells, angular velocity cells, and
global inhibition cells), using connectome data to establish the
patterns of connectivity between each cell type (Fig. 4 B–F
and SI Appendix, Text). We then analytically tuned the relative
connection strengths between different cell types such that
the dynamics of the bump parameters in the HD population
implement an approximation of the circular Kalman filter. We
also added a nonlinear element in the global inhibition layer
as this is required to approximate the circular Kalman filter.
We found that this network achieves a HD encoding accuracy
which is indistinguishable from that of our idealized Bayesian
ring attractor network (Fig. 4 G and H ). Thus, even when we
use connectome data to incorporate biological constraints on the
network, the network is still able to implement dynamic Bayesian
inference.

Discussion

Uncertainty can affect navigation strategy (45, 46), spatial cue
integration (47, 48), and spatial memory (49). This provides a
motivation for understanding how uncertainty is represented in
the neural networks that encode and store spatial variables for
navigation. There is good reason to think that these networks
are built around attractors. Thus, it is crucial to understand how
attractors in general—and ring attractors in particular—might
track uncertainty in spatial variables like head direction.

In this study, we have shown that a ring attractor can track
uncertainty by operating in a dynamic regime away from its
stable baseline states (its attractor states). In this regime, bump
amplitude can vary because local excitatory and global inhibitory
connections in the ring attractor are relatively weak. By contrast,
stronger overall connections produce a more conventional ring
attractor that operates closer to its attractor states. Because
the “Bayesian” ring attractor has a variable bump amplitude,
bump amplitude grows when recent HD observations have
been more reliable; in this situation, the network automatically
ascribes more weight to its current estimate, relative to new
evidence. Importantly, we have shown that nearly optimal

A

AV+

AV-

HD

INH multiplicative 
inhibitionbroad

excitation

AV- AV+

HD

HD
EXT

cosine-shaped
inhibition

EXT
(inh.)

D

E

F

B C

inhibitory excitatory0
Postsynaptic

Pr
es

yn
ap

tic

EPG PEN1 PEN1 Delta7

D
elta7

PEN
1

PEN
1

EPG

HD Delta7AV+ INH
H

D

D
el
ta
7

AV+
IN

H
AV-

AV+

Pr
es

yn
ap

tic

Postsynaptic

Drosophila RNN

Angular velocity observations
circKF

Drosophila-like
networkIn

fe
re

nc
e 

ac
cu

ra
cy

0

0.5

1

1
2
3
4
5
6

G

H

EPG 

PEN1
Protocerebral

bridge 

Ellipsoid body 

ER

Bayesian ring
attractor

HD observation information rate [s-1]

0
10-2 10-1 100 101 102

C
er

ta
in

ty

H
D

 observations

Fig. 4. A Drosophila-like network implementing the circular Kalman filter.
(A) Cell types in the Drosophila brain that could contribute to implementing
the circular Kalman filter. (B) Connectivity between EPG, 17, and PEN1
neurons, as recovered from the hemibrain:v1.2.1 database (43). Neurons
were sorted by their spatial position as a proxy for their preferred HD.
The total number of synaptic connections between each cell pair was
taken to indicate the functional connection strength between these cells.
The polarity of 17 → 17 connections is unknown, and therefore, these
connections are omitted. (C) The connectivity profile of a recurrent neural
network (RNN) (Fig. 2D–F ) that implements an approximate circKF is strikingly
similar to the connectivity of neurons in the Drosophila HD system. To avoid
confusion with actual neurons, we refer to the neuronal populations in
this idealized RNN as head direction (HD), angular velocity (AV+ and AV-,
in reference to the two hemispheres), inhibitory (INH), and external input
(EXT) populations. (D) Differential activation of AV populations (left/right:
high/low) across hemispheres as well as shifted feedback connectivity from
AV to HD populations effectively implements the asymmetric (or shifted)
connectivity needed to turn the bump position (here, clockwise shift for
anticlockwise turn). (E) Broad excitation of the INH population by the HD
population, together with a one-to-one multiplicative interaction between
INH and HD population, implements the quadratic decay of the bump
amplitude needed for the reduction in certainty arising from probabilistic
path integration. (F ) External input is mediated by inhibiting HD neurons
with the preferred direction opposite to the location of the HD observation,
effectively implementing a vector sum of belief with HD observation. (G andH)
The inference accuracy of the Drosophila-like network is indistinguishable
from that of the Bayesian ring attractor. Inference accuracy, certainty, and
HD observation information rate are measured as for Fig. 2I.

evidence weighting does not require exact tuning of the network
connections. Indeed, even when we used connectome data
to implement a network with realistic biological connectivity
constraints, the network could still support near-optimal evidence
weighting.

A key element of our approach is that bump amplitude is used
to represent the internal certainty of the system’s Bayesian HD
posterior belief. In our framework, internal certainty determines
the weight ascribed to new evidence, relative to past evidence.
As such, the representation of internal certainty plays a crucial
role in maximizing the accuracy of our Bayesian ring attractor.
This stands in contrast to recent network models of the HD
system that do not encode internal certainty, even though
they weigh HD observations in proportion to their reliabilities
(50, 51). Notably, our network also automatically adjusts its
cue integration weights to perform close-to-optimal Bayesian
inference for HD observations of varying reliability. Recent
work (52) described how observations of a circular variable
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(such as HD) could be integrated across brief time periods,
provided that these observations all have the same reliability;
however, this work considered neither the problem of integrating
observations of differing reliability nor the role of angular velocity
observations. Moreover, the network described in that study
operated below the fixed point of the bump amplitude, and
therefore, it can only correctly weight incoming observations
over a short period before reaching the fixed point.

Another important element of our approach was that we
benchmarked our network model against a rigorous norma-
tive standard, the circular Kalman filter, which was derived
analytically in ref. 31 and described here in terms of intuitive
vector operations. Being able to rely on the circular Kalman
filter was important because it allowed us to analytically derive
the proper parameter values of our network model, so that the
network’s estimate matched the estimate of an ideal observer.
A remarkable property of the circular Kalman filter is that new
HD observations will actually decrease certainty if they conflict
strongly with the current estimate. This is not a property of a
standard (noncircular) Kalman filter or a neural network designed
to emulate it (33). The power of conflicting evidence to decrease
certainty is particular to the circular domain. Our Bayesian ring
attractor network automatically reproduces this important aspect
of the circular Kalman filter. Of course, the circular Kalman filter
has applications beyond neural network benchmarking, as the
accurate estimation of orientation or any other periodic variable
has broad applications in the field of engineering.

When adequately tuned, our network can implement a
persistent working memory of a circular variable, as, for example,
the orientation of a visual stimulus in a visual working memory
task. Recent models for such tasks attribute memory recall
errors to the stochastic emission of a limited number of spikes
(7, 53). As in our network, neural noise can be averaged out
once the network has a sufficiently large number of neurons;
for this reason, memory errors can be attributed only to the
noise of individual neurons in small networks with few neurons.
Significant memory errors in larger Bayesian ring attractors thus
have to result from other sources of noise, such as imperfect
connectivity weights, or correlated input noise from, e.g., shared
inputs, that fundamentally limits the amount of information that
these inputs provide to the network (54).

In the brain’s HD system, the internal estimate of HD is
based on not only HD observations (visual landmarks, etc.) but
also angular velocity observations. The process of integrating
these angular velocity observations over time is called angular
path integration. Angular path integration is inherently noisy,
and therefore, uncertainty will grow progressively when HD
observations are lacking. Our Bayesian ring attractor network is
notable in explicitly treating angular path integration as a problem
of probabilistic inference. Each angular velocity observation has
limited reliability, and this causes the bump amplitude to decay in
our network as long as HD observations are absent, in a manner
that well approximates the certainty decay of an ideal observer.
In this respect, our network differs from previous investigations
of ring attractors having variable bump amplitude (55).

Our work makes several testable predictions. First, we predict
that the HD system should contain the connectivity motifs
required for a Bayesian ring attractor. Our analysis of Drosophila
brain connectome data supports this idea; we expect similar
network motifs to be present in the HD networks of other
animals, such as that of mice (15, 19), monkeys (56), humans
(57), or bats (58). In the future, it will be interesting to determine
whether synaptic inhibition in these networks is nonlinear, as
predicted by our models.

Second, we predict that bump amplitude in the HD system
should vary dynamically, with higher amplitudes in the presence
of reliable external HD cues, such as salient visual landmarks. In
particular, when bump amplitude is high, the bump’s position
should be less sensitive to the appearance of new external HD
cues. Notably, an experimental study from the mouse HD
system provides some initial support for these predictions (19).
This study found that the amplitude of population activity in
HD neurons (what we call bump amplitude) increases in the
presence of a reliable visual HD cue. Bump amplitude also varied
spontaneously when all visual cues were absent (in darkness);
intriguingly, when the bump amplitude was higher in darkness,
the bump position was slower to change in response to the
appearance of a visual cue, suggesting a lower sensitivity to the
cue. In the future, more experiments will be needed to clarify
the relationship between bump amplitude, certainty, and cue
integration. In particular, it is puzzling that multiple studies
(16, 18, 19, 24, 59, 60) have found that bump amplitude
increases with angular velocity, as higher angular velocities should
not increase certainty.

In the future, more investigation will be needed to understand
evidence accumulation on longer timescales. The circular Kalman
filter is a recursive estimator: At each time step, it considers only
the observer’s internal estimate from the previous time step as well
as the current observation of new evidence. However, when the
environment changes, it would be useful to use a longer history
of past observations (and past internal estimates) to readjust the
weight assigned to the changing sources of evidence. Available
data suggest that Hebbian plasticity can progressively strengthen
the influence of the external sensory cues that are most reliably
correlated with HD (17, 49, 61, 62). The interaction of Hebbian
plasticity with attractor dynamics could provide a mechanism for
extending statistical inference to longer timescales (13, 63–69).

In summary, our work shows how ring attractors could
implement dynamic Bayesian inference in the HD system. Our
results have significance beyond the encoding of head direction—
e.g., they are potentially relevant for the grid cell ensemble, which
appears to be organized around ring attractors even though
it encodes linear rather than circular variables. Moreover, our
models could apply equally to any brain system that needs to
compute an internal estimate of a circular or periodic variable,
such as visual object orientation (6, 70) or circadian time. More
generally, our results demonstrate how canonical network motifs,
like those common in ring attractor networks, can work together
to perform close-to-optimal Bayesian inference, a problem with
fundamental significance for neural computation.

Materials and Methods

Ideal Observer Model: The Circular Kalman Filter. Our ideal observer
model—the circular Kalman filter (circKF) (31)—performs dynamic Bayesian
inference for circular variables. It computes the posterior belief of an unobserved
(true) HD φt ∈ [−π ,π ] at each point in time t, conditioned on a continuous
stream of noisy angular velocity observations v0:t = {v0, vdt , . . . vt} with
vτ ∈ R, and HD observations z0:t = {z0, zdt , . . . zt} with zτ ∈ [−π ,π ]. In
contrast to the discrete-time description in Results, we here provide a continuous-
time formulation of the filter. Specifically, we assume that these observations are
generated from the true angular velocity φ̇t and HDφt , corrupted by zero-mean
noise at each point in time, via

vt|φ̇t ∼N

(
φ̇t ,

1
κv dt

)
, [5]

zt|φt ∼ VM (φt , κz dt) . [6]
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Here, N (µ, σ 2) denotes a Gaussian with mean µ and variance σ 2,
VM(µ, κ) denotes a von Mises distribution of a circular random variable
with mean µ and precision κ , and κv and κz quantify reliabilities of angular
velocity and HD observations, respectively. Note that as dt → 0, the precision
values of both angular velocity and HD observations approach 0, in line with the
intuition that reducing a time-step size dt results in more observations per unit
time, which should be accounted for by less precision per observation to avoid
“oversampling” (SI Appendix for a subtlety for how κz scales with time).

To support integrating information over time, the model assumes that current
HDφt depends on past HDφt−dt . Specifically, in the absence of further evidence,
the model assumes that HD diffuses on a circle,

φt|φt−dt ∼N

(
φt−dt ,

dt
κφ

)
mod 2π , [7]

with a diffusion coefficient that decreases with κφ .
The circKF in Eqs. 1 and 2 assumes that the HD posterior belief can be

approximated by a von Mises distribution with time-dependent mean µt and
certainty κt , i.e. p(φt|v0:t , z0:t) ≈ VM(φt;µt , κt). Such an approximation
is justified if the posterior is sufficiently unimodal and can, for instance, be
compared to a similar approximation employed by extended Kalman filters for
noncircular variables.

An alternative parametrization of the von Mises distribution to its mean
µt and precision κt is its natural parameters, xt = (κt cosµt , κt sinµt)

T .
Geometrically, the natural parameters can be interpreted as the Cartesian
coordinates of a “HD belief vector” and (µt , κt) as its polar coordinates (Fig. 1B).
As we show in SI, the natural parameter parametrization makes including HD
observations in the circKF straightforward. In fact, it becomes a vector addition. In
contrast, including angular velocity observations is mathematically intractable,
such that the circKF relies on an approximation method called projection filtering
(30) to find closed-form dynamic expressions for posterior mean and certainty
(see ref. 31 for technical details and SI Appendix for a more accessible description
of the circKF).

Taken together, the circKF for the model specified by Eqs. 5–7 reads

dµt =
κv

κφ + κv
vt dt +

κz
κt

sin(zt − µt)dt, [8]

dκt = −
f(κt)

2(κφ + κv)
κtdt + κz cos(zt − µt)dt, [9]

which is the continuous-time equivalent to Eqs. 1 and 2 in Results and where
f(κ) is a monotonically increasing nonlinear function,

f(κ) =
A(κ)

κt − A(κ)− κA(κ)2
, with A(κ) =

I1(κ)
I0(κ)

, [10]

and I0(·) and I1(·) denote the modified Bessel functions of the first kind of
order 0 and 1, respectively.

For a sufficiently large κ (i.e., high certainty), the nonlinearity f(κ) ap-
proaches the linear function, f(κ)→ 2κ − 2. In our quadratic approximation,
we thus replace the nonlinearity with a quadratic decay:

dκt = −
1

κφ + κv

(
κ2

t − κt
)

dt + κz sin(zt − µt)dt, [11]

which well approximates the circKF in the high certainty regime.

Network Model. We derived a rate-based network model that implements
(approximations of) the circKF, by encoding the von Mises posterior parameters
in activity rt ∈ RN of a neural population with N neurons. Thereby, we focused
on the simplest kind of network model that supports such an approximation,
which is given by Eq.4. In that equation, τ is the cell-intrinsic leak time constant,
g : RN

→ R+ is a scalar nonlinearity, and the elements of rt are assumed
to be ordered by the respective neuron’s preferred HD, φ1, . . . ,φN (Eq. 3). We
decomposed the recurrent connectivity matrix into W(vt) = wconst 1

N11
T +

wsymWcos + wasym(vt)Wsin, where 11T is a matrix filled with 1’s, and Wcos

and Wsin refer to cosine- and sine-shaped connectivity profiles (Fig. 2G). The
network’s circular symmetry makes the entries of these matrices depend only
on the relative distance in preferred HD, and the entries are given by Wcos

ij =

2
N cos(φi−φj), and Wsin

ij = 2
N sin(φi−φj). The scaling factor 2

N was chosen
to facilitate matching our analytical results from the continuum network to the
network structure outlined here. We further considered a cosine-shaped external
input of the form Iext

t (φi) = It(dt) cos(8t − φi) that is peaked around an
input location 8t . Here, It(dt) denotes the input pattern in the infinitesimal
time bin dt.

As described in Results, we assume the population activity rt to encode the
HD belief parametersµt and κt in the phase and amplitude of the activity’s first
Fourier component. As we show in SI Appendix, the described network dynamics
thus lead to the following dynamics of the cosine-profile parametersµt and κt:

dµt = wasym(vt) dt +
It
κt

sin(8t − µt), [12]

dκt =

(
wsym
−

1
τ

)
κt dt − g(rt)κt dt + It cos(8t − µt). [13]

To derive these dynamics, we make the following three assumptions. First,
we assume the network to be rate based. Second, our analysis assumes a
continuum of neurons, i.e., N → ∞. For numerical simulations, and the
network description below, we used a finite-sized network of size N that
corresponds to a discretization of the continuous network. SI Appendix, Fig. S2
demonstrates only a very weak dependence of our results on the exact number
of neurons in the network. Third, our analysis and simulations focused on the
first Fourier mode of the bump profile and is thus independent of the exact
shape of the profile (as long as Eq. 3 holds).
Network parameters for Bayesian inference. Having identified how the
dynamics of µt and κt encoded by the network, Eqs. 12 and 13 depend
on the network parameters, we now tuned these parameters to match these
dynamics to those of the mean and certainty of the circKF, Eqs. 8 and 9. Here,
we first do so to achieve an exact match to the circKF, without the quadratic
approximation. After that, we describe the quadratic approximation that is used
in the main text and leads to the Bayesian ring attractor network. Specifically,
an exact match to the circKF requires the following network parameters:

• Asymmetric recurrent connectivities are modulated by angular velocity
observations, wasym(vt) = κv

κφ+κv
vt , which shifts the activity profile without

changing its amplitude (12, 13).
• HD observations zt are represented as the peak position 8t of a cosine-

shaped external input whose amplitude is modulated by the reliability of
the observation, i.e., It = κz dt. The inputs might contain additional Fourier
modes (e.g., a constant baseline), but those do not affect the dynamics in
Eqs. 12 and 13.

• The symmetric component of the recurrent excitatory input needs to exactly
balance the internal activity decay, i.e., wsym

−
1
τ = 0.

• The decay nonlinearity is modulated by the reliability of the angular velocity
observations and is given by g(rt) = 1

2(κφ+κv)
f
(
κ(rt)

)
, where f(·) equals

the nonlinearity that governs the certainty decay in the circKF, Eq. 10. This
can be achieved, for example, through interaction with an inhibitory neuron
(or a pool of inhibitory neurons) with activation function f(·) that computes
the activity bump’s amplitude κ(rt).

A network with these parameters is not an attractor network, as its activity decays
to zero in the absence of external inputs.

To arrive at the Bayesian ring attractor, we approximate the decay
nonlinearity by a quadratic approximation that takes the form g(rt)rt →

wquad
(
π
N
∑N

i=1[r
(i)
t ]+

)
· rt , where [·]+ denotes the rectification nonlin-

earity. The resulting recurrent inhibition can be shown to be quadratic in the
amplitude κt and has the further benefit of introducing an attractor state at a
positive bump amplitude (below). In the large population limit, N→∞, this
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leads to the amplitude dynamics (SI Appendix for derivation)

dκt =

(
wsym
−

1
τ

)
κt dt − wquadκ2

t dt + It cos(8t − µt). [14]

The dynamics of the phase µt does not depend on the form of g(·) and
thus remains to be given by Eq. 12. If we set the network parameters to
wquad = 1

κφ+κv
and wsym

−
1
τ = 1

κφ+κv
, while sensory input, i.e., angular

velocity vt and HD observations zt , enters in the same way as before, the network
implements the quadratic approximation to the circKF, Eqs. 8 and 11.
General ring-attractor networks with fixed point �∗ and decay speed �. In
the absence of HD observations (It = 0), the amplitude dynamics in Eq.14has a
stable fixed point at κ∗ = wsym

−1/τ
wquad and no preferred phase, making it a ring-

attractor network. Linearizing theκt dynamics around this fixed point reveals that
it is approached with decay speed β = wsym

−
1
τ . Therefore, we can tune the

parameters to achieve a particular fixed point κ∗ and decay speed β by setting
wsym = β + 1/τ and wquad = β

κ∗ . A large value of β requires increasing
both wsym and wquad, yields faster dynamics, and thus indicates more rigid
attractor dynamics. In the limit of β → ∞, the attractor becomes completely
rigid in the sense that, upon any perturbation, it immediately moves back to
its attractor state. In the main text, we assume conventional ring attractors to
operate close to this rigid regime. For the Bayesian ring attractor, we findκ∗ = 1
and β = 1

κφ+κv
. Further, in our simulations in Fig. 3, we explored network

dynamics with a range of κ∗ and β values by adjusting network parameters
accordingly.

Assessing the Impact of Neural Noise on Inference Accuracy. In SI
Appendix, we show that neural noise results in an unbiased diffusion of µt
and a diffusion and positive drift of κt . We assessed the impact of this noise on
inference accuracy by simulating a network with N = 64 neurons and κ∗ and
β tuned to maximize noise-free inference accuracy (“Best network model” in
Fig. 3D) and by adding Gaussian zero-mean white noise with variance σ 2

nnδt in
each time step δt to each neuron, for different levels of σnn (Fig. 3F, light blue
lines). We computed the signal-to-noise ratio for each simulation as the average
κt divided by the diffusion noise SDσnn

√
2/N that additive neural noise causes

in κt (SI Appendix for derivation). The impact of this noise can be reduced by
retuning the network’s connectivity strengths. We did so for each neural noise
magnitude separately by a grid search over κ∗ and β (SI Appendix, Fig. S4),
similar to the previous section (Fig. 3F, purple lines).

Drosophila-like multipopulation network. We extended the single pop-
ulation network dynamics, Eq. 4, to encompass five populations: a HD
population, which we designed to track HD estimate and certainty with its
bump parameter dynamics; two angular velocity populations (AV+ and AV-),
which are tuned to HD and are differentially modulated by angular velocity
input; an inhibitory population (INH); and a population that mediates external
input (EXT), corresponding to HD observations. The network parameters were
tuned such that the activity profile in the HD population tracks the dynamics of
the circKF quadratic approximation, in the same way as for the single-population
network, Eq. 4. To limit the degrees of freedom, we further constrained the
connectivity structure between HD and AV+/- and INH populations by the
known connectome of the Drosophila HD system (hemibrain dataset in ref. 42)
and tuned only across-population connectivity weights. For further details on the
network dynamics and with- and across-population connectivity weights, please
consult SI Appendix.

Simulation Details.
Numerical integration. Our simulations in Figs. 2–4 used artificial data that
matched the assumptions underlying our models. In particular, the “true” HD
φt followed a diffusion on the circle, Eq. 7, and observations were drawn at each
point intimefromEqs.5and6. Tosimulatetrajectoriesandobservations,weused
the Euler–Maruyama scheme (71), which supports the numerical integration of
stochastic differential equations. Specifically, for a chosen discretization time
step 1t, this scheme is equivalent to drawing trajectories and observations

from Eqs. 7, 5, and 6 directly while substituting dt → 1t. The same time-
discretization scheme was used to numerically integrate the SDEs of the circKF,
Eqs. 8 and 9 and its quadratic approximation, Eq. 11.
Performance measures. To measure performance, in Figs. 2I, 3 B and D and
4 G and H, we computed the circular average distance (72) of the estimate µT
from the true HD φT at the end of a simulation of length T = 20 from P =

5′000 simulated trajectories by m1 = 1
P
∑P

k=1 exp
(

i
(
µ

(k)
T − φ

(k)
T

))
.

The absolute value of the imaginary-valued circular average, 0 ≤ |m1| ≤ 1,
is unitless and denotes an empirical accuracy (or “inference accuracy”) and thus
measures how well the estimate µT matches the true HD φT . Here, a value
of 1 denotes an exact match. The reported inference accuracy is related to the
circular variance via Varcirc = 1 − |m1|. In SI Appendix, Fig. S5, we provide
histograms with samples µT − φT with different numerical values of |m1|
to provide some intuition for the spread of estimates for a given value of the
performance measure.

We estimated performance through such averages for a range of HD
observation information rates in Figs. 2I, 3B and 4G. This information rate is a
simulation time-step size-independent quantity, which measures the Fisher
information that HD observations provide about true HD per unit time. For
individual HD observations of duration dt, Eq. 6, this Fisher information
approaches Izt (φt) → (κzdt)2 /2 with dt → 0 (31, Theorem 2). Per unit
time, we observe 1/dt independent observations, leading to a total Fisher
information (or information rate) of γz = κ2

z dt/2. As in simulations, γz needs
to remain constant with changing1t to avoid increasing the amount of provided
information, the HD observation reliability κz needs to change with the size of
simulation time-step size 1t. To keep our plots independent of this time-step
size, we thus plot performance as a function of the HD observation information
rate rather thanκz . For the inset of Fig. 3B, and for Figs. 3 D and F, we additionally
performed a grid search over the fixed-point κ∗ (Fig. 3 B, inset) or both the
fixed-point κ∗ and of the decay speed β (Figs. 3 D and F). For each setting
of κ∗ and β , we assessed the performance by computing an average over
this performance for a range of HD observation information rates, weighted by
how likely each observation reliability is assumed to be a priori. The latter was
specified by a log-normal prior, p(γz) = Lognormal(γz|µγz , σ 2

γz ), favoring

intermediate reliability levels. We choseµγz = 0.5 and σ 2
γz = 1 for the prior

parameters, but our results did not strongly depend on this parameter choice.
The performance loss shown in Fig. 3D also relied on such a weighted average
across information rates γz for a particle filter benchmark (PF, SI for details). The
loss itself was then defined as 1− Performance

Performance PF .
Update weights for HD observations. In Fig. 3C, we computed the weight
with which a single HD observation with |zt − µt| = 90◦ changes the HD
estimate. We defined this weight as the change in HD estimate, normalized
by the value of the maximum possible change, w = 1µt

π = 1
π tan−1 κz dt

κt
.

To make units intuitively comparable between the two axes, we chose to scale
the y-axis in units of Fisher information of a single HD observation of duration
1t = 10ms, given by Izt (φt) = γz 1t whereγz = κ2

z 1t/2. Thus, the weight
is plotted as a function of the Fisher information of a single HD observation
(how reliable is the observation?) and the Fisher information of the current
HD posterior belief (how certain is the current estimate?), which is given by

Iµt ,κt (φt) = κt
I1(κt)
I0(κt)

(31).

Simulation parameters. In our network simulations, we set the leak time
constant τ to an arbitrary, but nonzero, value. Effectively, this resulted in
a cosine-shaped activity profile. Note that by setting higher-order recurrent
connectivities accordingly, other profile shapes could be realized, without
affecting the validity of our analysis from the neural activity vector rt , we re-
trieved the natural parametersxt with a decoder matrix A = (cos(�), sin(�))T ,
such that xt = A · rt , and subsequently computed the position of the bump
by φt = arctan 2(x2, x1) and the encoded certainty (length of the population

vector) by κt =
√

x2
1 + x2

2 .
In all our simulations, times are measured in units of inverse diffusion

time constant κφ , where we set κφ = 1s for convenience. We used the
following simulation parameters. For Fig. 2H, we used κv = 2 and information
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rate of HD observations of γz = 10/s (equaling κz ≈ 45; during “Visual
cue” period) and κz = 0 (during “Darkness” period). For Figs. 2I and 3 B
and D we used κv = 1, T = 20, and averaged results over P = 5, 000
simulation runs. For Fig. 3E, we used κv = 1, information rate of γz = 1/s
(equaling κz ≈ 14), T = 10. In the network simulations in Fig. 2 H and I
and Fig. 3 B and D, we translated these parameters into network connectivity
parameters according to our analytical results in SI Appendix, section 3B. Without
loss of generality, we set all connectivity parameters that are not explicitly
mentioned, to zero (including wconst). Please consult SI Appendix for details
on the Drosophila network simulation parameters. We used1t = 0.01 for all
simulations.

Trajectory simulations and general analyses were performed on a MacBook
Pro (Mid 2019) running 2.3 GHz 8-core Intel Core i9. Parameter scans were run
on the Harvard Medical School O2 HPC cluster. For all our simulations, we used
Python 3.9.1 with NumPy 1.19.2.

Data, Materials, and Software Availability. Computer simulations and data
analysis were performed with custom Python code, which has been deposited
in Zenodo, DOI: 10.5281/zenodo.7615975.
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55. S. Carroll, K. Josić, Z. P. Kilpatrick, Encoding certainty in bump attractors. J. Comput. Neurosci. 37,

29–48 (2014).
56. R. G. Robertson, E. T. Rolls, P. Georges-François, S Panzeri, Head direction cells in the primate

pre-subiculum. Hippocampus 9, 206–219 (1999).
57. O. Baumann, J. B. Mattingley, Medial parietal cortex encodes perceived heading direction in

humans. J. Neurosci. 30, 12897–12901 (2010).
58. A. Finkelstein et al., Three-dimensional head-direction coding in the bat brain. Nature 517,

159–164 (2015).
59. M. B. Zugaro, E. Tabuchi, C. Fouquier, A. Berthoz, S. I. Wiener, Active locomotion increases peak

firing rates of anterodorsal thalamic head direction cells. J. Neurophysiol. 86, 692–702 (2001).
60. M. E. Shinder, J. S. Taube, Self-motion improves head direction cell tuning. J. Neurophysiol. 111,

2479–2492 (2014).
61. J. J. Knierim, H. S. Kudrimoti, B. L. McNaughton, Interactions between idiothetic cues and external

landmarks in the control of place cells and head direction cells. J. Neurophysiol. 80, 425–446
(1998).

62. Y. E. Fisher, J. Lu, I. D’Alessandro, R. I. Wilson, Sensorimotor experience remaps visual input to a
heading-direction network. Nature 576, 121–125 (2019).

63. A. T. Keinath, R. A. Epstein, V. Balasubramanian, Environmental deformations dynamically shift the
grid cell spatial metric. eLife 7, e38169 (2018).

64. M. Milford, G. Wyeth, D. Prasser, “RatSLAM: A hippocampal model for simultaneous localization
and mapping” in IEEE International Conference on Robotics and Automation, 2004. Proceedings.
ICRA 2004 (IEEE, New Orleans, LA, USA, 2004), vol. 1, pp. 403–408.

PNAS 2023 Vol. 120 No. 9 e2210622120 https://doi.org/10.1073/pnas.2210622120 11 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 9
8.

22
9.

15
0.

16
2 

on
 F

eb
ru

ar
y 

22
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

98
.2

29
.1

50
.1

62
.

https://www.pnas.org/lookup/doi/10.1073/pnas.2210622120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2210622120#supplementary-materials
https://doi.org/10.5281/zenodo.7615975
https://www.pnas.org/lookup/doi/10.1073/pnas.2210622120#supplementary-materials
https://doi.org/10.1088/0954-898X/7/4/004


65. M. Mulas, N. Waniek, J. Conradt, Hebbian plasticity realigns grid cell activity with external sensory
cues in continuous attractor models. Front. Comput. Neurosci. 10 (2016).

66. S. A. Ocko, K. Hardcastle, L. M. Giocomo, S. Ganguli, Emergent elasticity in the neural code for
space. Proc. Natl. Acad. Sci. U.S.A. 115 (2018).

67. H. J. I. Page et al., A theoretical account of cue averaging in the rodent head direction system.
Philosop. Trans. R. Soc. B: Biol. Sci. 369, 20130283 (2014).

68. H. J. I. Page, K. J. Jeffery, Landmark-based updating of the head direction system by retrosplenial
cortex: A computational model. Front. Cell. Neurosci. 12, 191 (2018).

69. A. J. Cope, C. Sabo, E. Vasilaki, A. B. Barron, J. A. R. Marshall, A computational model of the
integration of landmarks and motion in the insect central complex. PLoS One 12, e0172325
(2017).

70. R. J. van Beers, A. C. Sittig, J. J. D. vd. Gon, Integration of proprioceptive and visual position-
information: An experimentally supported model. J. Neurophysiol. 81, 1355–1364 (1999).

71. P. E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Applications of
Mathematics (Springer, Berlin, ed. 3, 2010), No. 23.

72. K. V. Mardia, P. E. Jupp, Directional Statistics (John Wiley & Sons, 2000), p. 3.

12 of 12 https://doi.org/10.1073/pnas.2210622120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 9
8.

22
9.

15
0.

16
2 

on
 F

eb
ru

ar
y 

22
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

98
.2

29
.1

50
.1

62
.



Supplementary Information for

Bayesian inference in ring attractor networks

Anna Kutschireiter, Melanie A. Basnak, Rachel I. Wilson and Jan Drugowitsch

Jan Drugowitsch,
E-mail: jan_drugowitsch@hms.harvard.edu

This PDF file includes:

Supplementary text
Figs. S1 to S5
References for SI reference citations

Anna Kutschireiter, Melanie A. Basnak, Rachel I. Wilson and Jan Drugowitsch 1 of 30



Contents

1 Circular Kalman filtering 3
A Generative model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
B Discrete-time Bayesian filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

B.1 Angular velocity observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
B.2 HD observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
B.3 The circular Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
B.4 The quadratic approximation of the circular Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . 5

C Coordinate transforms [Technical] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
D Numerical benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

D.1 Bootstrap particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
D.2 HD tracking performance measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Neural encoding example: encoding of the von Mises distribution with a linear probabilistic population
code 8
A Tuning with respect to (true) HD ϕt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
B Tuning with respect to HD estimate µt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Details on Bayesian ring attractor dynamics and parameter tuning 11
A Network that exactly implements the circKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
B Network with quadratic nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
C Continuous vs. discrete networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
D Stochastic correction [Technical] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Details on Drosophila-like network 15
A Connectivity motifs in the Drosophila HD system connectome . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
B A multi-network model mimicking the Drosophila HD system connectome . . . . . . . . . . . . . . . . . . . . . 15

B.1 AV± population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
B.2 INH population. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
B.3 Recurrent excitation within HD population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
B.4 Summary of network connectivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C Drosophila-like network simulations and HD tracking performance . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 The impact of neural noise on inference dynamics 20
A The qualitative impact of neural noise on inference dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
B How neural noise quantitatively impacts the dynamics of µt and κt . . . . . . . . . . . . . . . . . . . . . . . . . 20

B.1 The impact of neural noise on x1 and x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
B.2 The impact of neural noise on µ and κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
B.3 Neural noise models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

C Compensating for noisy neurons when performing inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Supplementary Figures 24

2 of 30 Anna Kutschireiter, Melanie A. Basnak, Rachel I. Wilson and Jan Drugowitsch



Supporting Information Text

1. Circular Kalman filtering

Here, we present a derivation of the circular Kalman filter (circKF), which we use as an ideal observer model in the main text.
The following derivation’s main purpose is to provide the reader with some intuition behind the formalism, such that it uses a
discrete-time approximation, followed by taking the continuous-time limit. For a mathematically-rigorous, continuous-time
derivation of the circKF, please consult (1).

A. Generative model. Assuming time to be discretized in steps of dt, the overall goal is to derive an online estimator for the
unobserved true head direction (HD) ϕt ∈ [−π, π] at each point in time t, conditioned on a continuous stream of noisy angular
velocity observations Vt = {v0, vdt, . . . vt} (in the main text denoted v0:t) with vτ ∈ R and HD observations Zt = {z0, zdt, . . . zt}
(in the main text denoted z0:t) with zτ ∈ [−π, π]. We assume that these observations are generated from the (true) angular
velocity ϕ̇t = ϕt−ϕt−dt

dt
and HD ϕt, respectively, and are corrupted by zero-mean noise at each point in time:

p(vt|ϕt, ϕt−dt) = N
(

vt;
ϕt − ϕt−dt

dt
,

1
κv dt

)
, [S1]

p(zt|ϕt) = VM (zt; ϕt, κz dt) , [S2]

where VM(φ; µ, κ) = eκ cos(φ−µ)

2πI0(κ) denotes the von Mises distribution of a circular random variable φ with mean µ and precision κ.
κv and κz refer to the precision of the angular velocity and HD observations, respectively. The precision κzdt of HD observations
scales with dt to ensure that smaller “time steps” come with less informative HD observations to avoid “oversampling” in the
dt→ 0 limit. More technically, we need to ensure that the Fisher information that each HD observation has about the HD
scales linearly with dt. As we show in (1, Theorem 2), this Fisher information is given by Izt (ϕt) =

√
2γzdt where γz is the HD

observation Fisher information rate per unit time. For small dt→ 0 we furthermore have γzdt→ (κzdt)2/2 (see (1)) such that
κz needs to be adjusted if the simulation time step size ∆t changes in order to keep γz constant. As our simulations all use the
same time step size, we safely ignore this subtlety for the remainder of this text.

We further assume that HD ϕt follows a diffusion on the circle, which serves as a dynamic prior over HD in terms of a
transition density:

p(ϕt|ϕt−dt) ∼ N
(

ϕt; ϕt−dt,
dt

κϕ

)
mod 2π, [S3]

Here, κϕ ≥ 0 is related to the inverse diffusion constant: a large κϕ implies limited diffusion and an almost-stationary stochastic
process. In this case, past observations are generally highly informative about the current HD. A small κϕ implies that HD
is most likely to change significantly from one time step to the next, indicating that past observations only provide limited
information about our current HD.

B. Discrete-time Bayesian filtering. Given the posterior p(ϕt−dt|Yt−dt, Zt−dt) at some previous time-step t− dt, we compute
the posterior at the current time step t using the conditional dependencies of the model and Bayes’ theorem:

p(ϕt|Vt, Zt) ∝ϕt p(zt|ϕt)p(ϕt|Vt, Zt−dt)

= p(zt|ϕt)
∫

dϕt−dt p(ϕt|ϕt−dt, vt)p(ϕt−dt|Zt−dt, Vt−dt).
[S4]

This equation offers a way to recursively compute the current posterior density from the previous one, by taking two distinct
steps: the so-called prediction and update step. The prediction step is a convolution between the previous posterior and the
transition density p(ϕt|ϕt−dt, vt), as implemented by the above integral. It tells us how the posterior is expected to evolve
in a single time step when only observing angular velocity information, but no HD observations, are present, resulting in
the prediction density p(ϕt|Vt, Zt−dt). Note that the angular velocity observations vt enter this step through the effective
transition probability p(ϕt|ϕt−dt, vt). In the update step, we multiply the result of the prediction step with the HD observation
likelihood p(zt|ϕt). Intuitively, this step can be understood as Bayesian cue integration between the prediction density and the
HD observations.

In general, we will not be able to solve Eq. [S4] in closed form∗ for continuous variables like HD. We thus have to introduce
approximations of p(ϕt|Vt, Zt) that allow us to consistently perform prediction and update steps. Specifically, as one of the
simplest choices for unimodal probability distributions for circular variables, we chose to approximate the posterior by a von
Mises distribution,

p(ϕt|Vt, Zt) ≈ VM(ϕt; µt, κt). [S5]

By using this approximation, the estimation task reduces to having to find evolution equations, conditioned on angular velocity
observations vt and HD observations zt, for the two parameters µt and κt, which are sufficient to fully specify the posterior
distribution. In what follows, we will consider the effect of angular velocity observations and HD observations on the two
parameters separately.

∗ In fact, a closed-form solution is almost never achievable for continuous state-spaces. One of the few cases where it is is when prediction and update steps are linear Gaussians, in which case Eq. [S4]
yields the Kalman filter.
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B.1. Angular velocity observations. In Eq. [S4], angular velocity observations enter through a modified transition density
p(ϕt|ϕt−dt, vt), which can be computed using Bayes’ theorem:

p(ϕt|vt, ϕt−dt) ∝ϕt p(vt|ϕt, ϕt−dt)p(ϕt|ϕt−dt). [S6]

The modified transition probability is again a Gaussian, as can be seen from its logarithm being quadratic in ϕt,

− log p(ϕt|vt, ϕt−dt) = κvdt

2

(
vt −

ϕt − ϕt−dt

dt

)2
+ κϕ

2dt
(ϕt − ϕt−dt)2 +R

= 1
2

κv + κϕ

dt
(ϕt − ϕt−dt)2 − κv

dt
(ϕt − ϕt−dt) vtdt +R

= 1
2

κv + κϕ

dt

(
ϕt −

(
ϕt−dt + κv

κv + κϕ
vtdt

))2

+R,

[S7]

where terms independent of ϕt, collectively denoted by R, can be absorbed in the normalization. Hence, the modified transition
probability reads:

p(ϕt|vt, ϕt−dt) = N
(

ϕt; ϕt−dt + κv

κϕ + κv
vt dt,

dt

κϕ + κv

)
mod 2π. [S8]

Together with the assumption that the posterior of the last time step, p(ϕt−dt|Vt−dt, Zt−dt), is given by a von Mises
distribution with mean µt−dt and precision κt−dt, we can write down the expression for the prediction density p(ϕt|Vt, Zt−dt)
(cf. first line in Eq. [S4]):

p(ϕt|Vt, Zt−dt) =
∫ π

−π

dϕt−dt p(ϕt|vt, ϕt−dt)p(ϕt−dt|Zt−dt, Vt−dt)

=
∫ π

−π

dϕt−dtN
(

ϕt; ϕt−dt + κv

κϕ + κv
vt dt,

dt

κϕ + κv

)
VM (ϕt−dt; µt−dt, κt−dt) .

[S9]

Unfortunately, there is no closed-form solution for this integral. To approximate the prediction density p(ϕt|Vt, Zt−dt) at each
moment in time by a von Mises density VM(ϕt; µ̃t, κ̃t), we will use a more sophisticated approximation method, namely a
projection filter (2). Such a filter ensures that this approximation is optimal by minimizing the infinitesimal Kullback-Leibler
divergence at each moment in time. The technical details can be found in (1), and in this SI we limit ourselves to giving the
final result:

dµt = κv

κv + κϕ
vt dt, [S10]

dκt = − f(κt)
2(κv + κϕ)κt dt. [S11]

Here, the decay of the certainty κt is governed by the nonlinear function

f(κt) = A(κt)
κt −A(κt)− κA(κt)2 , with A(κt) = I1(κt)

I0(κt)
, [S12]

where I0(·) and I1(·) denote the modified Bessel functions of the first kind of order 0 and 1. This function takes care of the fact
that the true HD ϕt follows a diffusion on the circle, which becomes particularly relevant for small values of κt. In particular,
f(κt) ≈ 1 for small κt and f(κt) ≈ 2κt − 2 for large κt, indicating that the decay is asymptotically quadratic.

B.2. HD observations. Angular-valued HD observations zt are integrated by multiplying the observation likelihood p(zt|ϕt) with
the prediction density p(ϕt|Vt, Zt−dt). If the prediction density is also von Mises (which is the assumption above), this cue
integration is closed:

p(ϕt|zt, dyt) = VM(zt; ϕt, κz dt) · VM(ϕt; µ̃t, κ̃t)

∝ exp

((
cos ϕt

sin ϕt

)⊤
·
(

κz dt

(
cos zt

sin zt

)
+ κ̃t

(
cos µ̃t

sin µ̃t

)))
[S13]

!= exp

((
cos ϕt

sin ϕt

)⊤
· κt

(
cos µt

sin µt

))
. [S14]

Thus, the natural parameters of the posterior distribution, xt = (x1, x2) = (κt cos µt, κt sin µt)⊤, can be written as the sum of
the natural parameters of the prediction density and the likelihood†:

xt = x̃t + κz

(
cos zt

sin zt

)
dt [S15]

dxt = xt − x̃t = κz

(
cos zt

sin zt

)
dt. [S16]

†This is not too surprising, as it is well known that in exponential family distributions these update steps boil down to adding up the natural parameters.
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The updates of the parameters µt and κt of the von Mises distribution due to the observation zt are obtained by transforming
the update of xt to polar coordinates:

dµupdate
t = d arctan 2 (x2, x1) = κz

κt
sin(zt − µt)dt [S17]

dκupdate
t = d

√
x2

1 + x2
2 = κz cos(zt − µt)dt. [S18]

B.3. The circular Kalman filter. In the continuum limit dt→ 0, we do not distinguish between the parameters of the prediction
density, µ̃t and κ̃t, and that of the posterior density, µt and κt. The circKF equations result from taking the prediction and
update steps simultaneously, thereby combining Eq. [S10] with Eq. [S17] for the mean dynamics, and Eq. [S11] with Eq. [S18]
for the precision dynamics:

dµt = κv

κϕ + κv
vt dt + κz

κt
sin(zt − µt)dt, [S19]

dκt = − f(κt)
2(κϕ + κv)κtdt + κz cos(zt − µt)dt. [S20]

Here, we adhered to expressing these equations in terms of their infinitesimal difference, dµt and dκt, instead of a differential
equation. This is a standard way to express stochastic differential equations (SDEs), which makes it more straightforward to
deal with the non-linear time scaling of the HD observations zt.

B.4. The quadratic approximation of the circular Kalman filter. If κt is sufficiently large, the nonlinearity f(κt) can be approximated by
a linear function, f(κt) ≈ 2κt − 2, such that the decay in Eq. [S20] becomes quadratic:

dκt ≈ −
1

κϕ + κv

(
κ2

t − κt

)
dt + κz cos(zt − µt)dt. [S21]

We use this approximation when implementing the Bayesian ring attractor network.

C. Coordinate transforms [Technical]. The von Mises distribution can be parametrized by its mean and precision parameters,
µ and κ, or in terms of its natural parameters, x = (x1, x2)⊤ = (κ cos µ, κ sin µ)⊤. These two parametrizations are perfectly
equivalent, and can be thought of as the polar and Cartesian coordinates of a vector, respectively. Except when κ = 0, which
we assume to never occur, we can go back and forth between these representations by performing a coordinate transformation.

For the neural network we describe further below, it is easier to decode x than µ and κ from neural population activity.
Thus, it is useful to express the circular Kalman filter as SDEs for x. Unfortunately, we cannot simply find these SDEs by
applying a coordinate transform to Eqs. [S19] and [S20]. Technically speaking, since the angular velocity observations vt

follow a stochastic process, we have to take into account second-order derivatives, which is called Itô’s lemma in stochastic
calculus (see (3) for an introduction). As we will here show in a slightly technical argument, using stochastic instead of ordinary
calculus explains why we need an additional decay term in the network implementation in Sec. 3 that would not arise from a
simple coordinate transform. Understanding this argument is not required for understanding our general theory and network
implementation, and thus can safely be skipped.

First, we express the generative model in Eqs. [S3] and [S1] in terms of their equivalent Itô stochastic differential equations
(SDEs). Defining the infinitesimal increment dut := vt dt, the SDEs read:

dϕt = 1
√

κϕ
dWt [S22]

dut = dϕt + 1√
κv

dVt, = 1
√

κϕ
dWt + 1√

κv
dVt, [S23]

where dWt ∈ R ∼ N (0, dt) and dVt ∈ R ∼ N (0, dt) are uncorrelated scalar-valued Brownian motion processes with dWt dVt = 0.
Since the variance of Brownian motion processes grows linearly in time, we have that (dWt)2 = dt, (dVt)2 = dt, and thus
(dut)2 =

(
1

κϕ
+ 1

κv

)
dt. The second equality in Eq. [S23] tells us that whenever angular velocity observations are drawn from

the ‘true’ generative model in Eq. [S1], they automatically inherit the noise of the process that was used to generate ϕt.
Itô’s lemma tells us how to perform a variable transformation from a stochastic process xt, which is governed by an Itô

SDE, to another stochastic process yt = g(xt):

dyt = dg(xt) = ∂g(x)
∂x

∣∣∣∣
x=xt

dxt + 1
2

∂2g(x)
∂x2

∣∣∣∣
x=xt

(dxt)2. [S24]

Thus, we can use Itô’s lemma to transform the dynamics of µt and κt in Eqs. [S10] and [S11] to the dynamics of the natural
parameters of the von Mises distribution. Note that, since the dynamics of κt are independent of the angular velocity
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observations, Eq. [S11] is deterministic with (dκt)2 = 0:

dxt = d
[

κt

(
cos µt

sin µt

)]
=
(

cos µt

sin µt

)
dκt + κt

(
− sin µt

cos µt

)
dµt + 1

2κt

(
− cos µt

− sin µt

)
(dµt)2

= − f(κt)
2(κϕ + κv)κt

(
cos µt

sin µt

)
dt + κtκv

κϕ + κv

(
− sin µt

cos µt

)
dut −

1
2

(
x1
x2

)
κ2

v

(κv + κϕ)2 (dut)2

= −1
2

f(κt)
κv + κϕ

xt dt− 1
2

κv/κϕ

κv + κϕ
xt dt + κv

κv + κϕ

(
0 −1
1 0

)
xt dut.

[S25]

Here, the additional decay term − 1
2

κv/κϕ

κv+κϕ
xtdt arises from the stochastic nature of the increment process ut.

Since HD observations zt are added on the level of natural parameters (cf. Eq. [S16]), these can be included in a straightforward
manner, yielding the circular Kalman filter in its natural parameter form:

dxt = −1
2

f(κt) + κv/κϕ

κv + κϕ
xt dt + κv

κv + κϕ

(
0 −1
1 0

)
xt dut + κz

(
cos zt

sin zt

)
dt. [S26]

D. Numerical benchmarks. As described above, the circKF approximates the posterior at each point in time by a von Mises
distribution, and thus is itself an approximate algorithm. To compare its performance, and that of the Bayesian ring attractor
to the truly best filtering performance for the assumed generative model, we additionally used a Bootstrap particle filter, which
is exact in the limit of an infinite number of particles. Here, we first outline the algorithm itself, and then discuss how we
assess filtering performance in general, to compare performance across algorithms.

D.1. Bootstrap particle filter. As a numerical benchmark, we used a Sequential Importance Sampling/Resampling particle filter (4)
(SIS-PF; member of the family of Bootstrap particle filters) that we modified to be applicable to angular velocity observations.
Here, we briefly outline the numerical implementation of the SIS-PF for our particular filtering problem, and refer the reader
to more specialized literature for derivation and convergence results (e.g., in (4, 5)).

The principle behind particle filters is that they provide a weighted empirical estimate of the posterior distribution,

p (ϕt|Vt, Zt) ≈
N∑

i=1

w
(i)
t δ(ϕt − φ

(i)
t ), [S27]

where we refer to w
(i)
t as the importance weight of the i-th particle with position φ

(i)
t . Weighted particle filters are asymptotically

exact, i.e. they provide us with the best possible inference performance in the limit of infinitely many particles N →∞. At
each discrete time step, the N particles in the SIS-PF are propagated according to the proposal density π, which we chose to
correspond to the modified transition density in Eq. [S8]:

π
(

φ
(j)
t |φ

(j)
t−∆t, vt

)
= N

(
φ

(j)
t ; φ

(j)
t−∆t + κv

κv + κφ
vt ∆t,

∆t

κφ + κv

)
mod 2π. [S28]

Subsequently, each particle j is weighted at each time step according to how well the proposed particle distribution fits to the
HD observation zt. This is equivalent to multiplying the previous weight with the observation likelihood (Eq. [S2]):

w
(i)
t = w

(i)
t−∆t · VM

(
zt; φ

(i)
t , κz∆t

)
. [S29]

Lastly, the particles are re-weighted such that the importance weights sum to 1,
∑

i
w

(i)
t = 1:

w
(i)
t ←

w
(i)
t∑

j
w

(j)
t

[S30]

In our simulations, we used N = 103 particles, which is sufficient if HD observations are present.
Mean µt and precision rt ∈ [0, 1] of the filtering distribution approximated by the SIS-PF can be determined at each time

step according to a weighted average on the circle, i.e. the first circular moment:

rt exp(iµt) =
N∑

j=1

w
(j)
t exp

(
iφ

(j)
t

)
. [S31]
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D.2. HD tracking performance measures. In the main text, we quantified HD tracking performance by estimating the absolute
value of the circular average distance between the estimate µT at the end of the trial (using the mean of the filter posterior,
which is the filter’s best guess), and the true HD ϕT , averaged across P simulations with different noisy observation sequences,
v0, . . . , vT and z0, . . . , zT :

m1 = 1
P

P∑
k=1

exp
(

i
(

µ
(k)
T − ϕ

(k)
T

))
. [S32]

Here, m1 is a complex number, and HD tracking performance corresponds to its absolute value, |m1| (larger = better / more
accurate). Note that this absolute value is one minus the circular variance of the error. As this variance is bounded by zero
and one, zero variance implies a performance of |m1| = 1, and maximum variance of one implies a performance of |m1| = 0. To
get a sense of how estimates µT are distributed around the true HD ϕT for a given value of |m1|, we provide representative
histograms in Fig. S5.
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2. Neural encoding example: encoding of the von Mises distribution with a linear probabilistic population code

In the main text, we assume a bump-like encoding of the HD posterior belief whose bump amplitude is scaled by the encoded
certainty κt. This implies that the amplitude of the first Fourier component is proportional to the certainty (see main text
Eq. (3)). This is trivially fulfilled for the cosine-shaped tuning curves that we used for illustration in the main text (main text
Fig. 2). Here, we will demonstrate that this also holds for a more elaborate bump encoding scheme: specifically, we consider
the case of a linear probabilistic population code (lPPC) (6–8) with independent Poisson neural noise. The central idea behind
such an lPPC is that neuronal activity encodes an exponential family probability distribution, e.g., about HD, such that the
natural parameters of this distribution can be retrieved through linear operations, that is, a weighted sum of neural activity.

In what follows, we will first show that an lPPC for a von Mises distribution with independent Poisson neurons gives rise to
von Mises shape tuning curves, which are scaled by the encoded certainty (following (6)). Using this result, we will derive the
population activity profile as a function of the encoded estimate and certainty that results from this encoding scheme, and
show that the amplitude of this profile is indeed also proportional to the encoded certainty.

A. Tuning with respect to (true) HD ϕt. We assume that tuning curves of the population encoding the posterior p(ϕt|Vt, Zt) can
be described by a typical shape f̃ , which is scaled by the population gain g. That is, the tuning curve of a single neuron i is
given by fi(ϕt) = g f̃i(ϕt). Following (6), we further assume that the neuronal population consists of N independent Poisson
neurons, which densely tile the stimulus space of true HDs, ϕ. Thus, we can write down the probability of a population firing
pattern r ∈ RN

+ as

p(r|ϕt, g) =
∏

i

(gf̃i(ϕt))ri

ri!
exp
(
−gf̃i(ϕt)

)
= exp

(∑
i

ri log(g f̃i(ϕt))−
∑

i

log ri!−
∑

i

g f̃i(ϕt)

)

∝ϕt exp

(∑
i

ri log f̃i(ϕt)

)
,

[S33]

where we used that
∑

i
g f̃i(ϕt) is approximately independent of HD ϕt due to the dense-tiling assumption.

Assuming that p(ϕt|r) follows an exponential family distribution, such as the von Mises distribution, an lPPC requires that
the natural parameters of this distribution can be recovered from the population activity by a linear operation, i.e., a weighted
sum. For a general exponential family distribution with d sufficient statistics T(ϕt) ∈ Rd, and natural parameters x, we thus
can re-parametrize the distribution in terms of the the population activities r (6):

p(ϕt|r) = 1
Z(ϕt, x) exp

(
T(ϕt)T · x

)
= 1

Z(ϕt, r) exp
(
T(ϕt)T ·Ar

)
,

[S34]

where the decoder matrix A ∈ Rd×N is defined via x = Ar. Assuming a uniform prior over HD, that is, p(ϕt) ∝ 1, we can
relate Eqs. [S33] and [S34] by Bayes’ rule, p(ϕt|r) ∝ p(r|ϕt, g). This results in the following conditions for the tuning curves:

p(ϕt|r) ∝ϕt p(r|ϕt), [S35]

⇒ log f̃(ϕt) = AT ·T(ϕt). [S36]

For a von Mises distribution, the natural parameters are given by T(ϕt) = (cos ϕt, sin ϕt)T . Thus, the argument of the
exponential in the neurons’ tuning curves is a linear combination of sines and cosines. This, in turn, can be written as a single
cosine ∝ c cos(ϕt − ϕi), where ϕi ∈ [−π, π] denotes the “preferred HD” of neuron i. The tuning curve of a single neuron is thus
von-Mises shaped, i.e.,

f̃i(ϕt) = exp (ξ cos(ϕt − ϕi)) , [S37]

where ξ is an additional parameter that controls the width of the tuning curves. Furthermore, the decoder matrix is constrained
via (AT )i = ξ (cos ϕi, sin ϕi).

In order to determine the population gain g, note that we require the natural parameters of the von Mises distribution,
x = κt (sin µt, cos µt), to be linearly decodable from the population activity via x = Ar. Since x is proportional in κt, this
linearity implies that the overall population activity r should also be overall scaled by κt. Hence, the tuning curve of a neuron
with preferred HD ϕi reads:

fi(ϕt) = gf̃i(ϕt) = κt exp (ξ cos(ϕ− ϕi)) . [S38]

To summarize, an lPPC with independent Poisson neurons gives rise to von Mises shaped tuning curves, whose gain is
scaled by the encoded certainty κt. Importantly, unlike for the encoded von Mises distribution, an increase in certainty κt does
not cause the resulting activity profile to sharpen.
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B. Tuning with respect to HD estimate µt. Tuning to true HD ϕt can only be measured if we have access to the encoded HD
estimate. To instead find the tuning with respect to µt and κt that parametrize the distribution of ϕt, we need to average the
neuron’s tuning for a given µt and κt over all possible realizations of ϕt. This results in the following tuning with respect to µt

and κt:

fi(µt, κt) =
∫ π

−π

dϕt fi(ϕt)VM (ϕt; µt, κt)

= κt

2πI0(κt)

∫ π

−π

dϕt exp (ξ cos(ϕt − ϕi) + κt cos(ϕt − µt))

= κt

2πI0(κt)

∫ π

−π

dϕt exp (κ̃t,i cos(ϕt − µ̃i))

= κt
I0(κ̃t,i)
I0(κt)

,

[S39]

with κ̃t,i =
√

ξ2 + κ2
t + 2ξκt cos(ϕi − µt). This tuning curve is again bump-shaped, with a peak at the encoded HD estimate

µt and the bump amplitude modulated by encoded certainty κt in a nonlinear manner.
For small values of encoded certainty, the tuning curve approaches a cosine-shaped tuning with a gain that is a nonlinear

function of κt. To see this, we use the series expansion of the Bessel function for a small argument z,

I0(z) =
∞∑

m=0

1
m!Γ(m + 1)

(
z

2

)2m

≈ 1 + 1
4z2 +O(z4), [S40]

and write for the tuning curve in the small-κt limit

κt
I0(κ̃t,i)
I0(κt)

≈ κt

I0(κt)

(
1 + 1

2 κ̃2
t,i

)
= κt

I0(κt)

(
1 + 1

4
(
ξ2 + κ2

t + ξκt cos(ϕi − µt)
))

. [S41]

Thus, the tuning curve of a neuron i for small values of κt is cosine-shaped, and modulated by the nonlinear factor ξκ2
t

4I0(κt) ,
which asymptotically approaches ξ

4 κ2
t for κt → 0.

For large values of κt, the tuning curve is von-Mises shaped and the gain is asymptotically linear in encoded certainty. To
see this, we use the Hankel expansion of the Bessel function I0(z) in the limit of large arguments z:

I0(z) ≈ ez

√
2πzz

+O
( 1

z2

)
, [S42]

and simplify

κt
I0(κ̃t,i)
I0(κt)

≈ κt

√
κt

κ̃t,i
exp (κ̃t,i − κt) . [S43]

Taylor-expanding the exponent κ̃t,i − κt for small values of 1/κt yields,

κ̃t,i − κt = κt

√
1 + ξ2

κ2
t

+ ξ

κt
cos(ϕi − µt)− κt ≈

ξ

2 cos(ϕi − µt) + ξ2

2κt
+O

(
1
κ2

t

)
. [S44]

Further, the pre-factor
√

κ̃t,i

κt
→ 1, and thus the tuning curve in the large-κt limit reads:

fi(µt, κt)→ κt exp
(

ξ

2 cos(ϕi − µt)
)

. [S45]

The choice of the width parameter ξ determines how large κt has to be for the tuning curve to scale linearly with encoded
certainty.

In Fig. S1, we demonstrate these limits (assuming ξ = 1 without loss of generality), and find numerically that linear scaling
of the population activity amplitude holds well even for small κt (e.g., κt ∼ 1, cf. Fig. S1f). In addition, the width of the profile
saturates quickly as we increase κt (which indicates the transition from cosine-shaped to von-Mises shaped tuning curve),
which makes the shape almost independent of κt. Therefore, the population profile is not just a rescaled version of the encoded
probability distribution (Fig. S1c), because an increase in certainty does not cause the bump to sharpen indefinitely.

The linear scaling of the amplitude with κt, and (almost) constant width, indicate that the parameters of the von Mises
distribution, µt and κt, can be retrieved from the population activity by computing the first Fourier coefficients:

Feven
1 [fi(µt, κt)] := 1

π

∫ π

−π

dϕi fi(µt, κt) cos(ϕi) ∝ κt cos µt = xt,1, [S46]

Fodd
1 [fi(µt, κt)] := 1

π

∫ π

−π

dϕi fi(µt, κt) sin(ϕi) ∝ κt sin µt = xt,2. [S47]
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The certainty κt can be retrieved via κt =
√

x2
t,1 + x2

t,2, and thus is proportional to the amplitude c1 of the first Fourier com-
ponent in amplitude-phase form. Likewise, the mean µt is the angle of the first Fourier component, i.e. µt = arctan 2(xt,1, xt,2).
In other words, the tuning profile can be expanded as

fi(µt, κt) ∼ κt cos(µt − ϕi) +R, [S48]

where R collectively denotes the orthogonal other Fourier modes. In Fig. S1g-j, we confirm the proportionality of the amplitudes
of the first Fourier coefficient in κt numerically.
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3. Details on Bayesian ring attractor dynamics and parameter tuning

In the main text we consider a rate-based network model, called the Bayesian ring attractor, that implements an approximation
to the circKF in the dynamics of its bump position and amplitude. Here, we derive this network in two steps. First, we
start with a network that implements the circKF exactly (in the limit of an infinite number of neurons) by implementing the
dynamics described by Eqs. [S19] and [S20]. This network won’t be a ring attractor, as its activity will decay to zero in the
absence of external inputs. After that we will change the network to instead implement the quadratic approximation to the
circKF by implementing the dynamics described by Eqs. [S19] and [S21], resulting in the Bayesian ring attractor described in
the main text.

Our derivation starts with a general network in the limit of infinitely many neurons, continuously covering the space of
preferred HDs. For this network we will analytically derive dynamics of bump position and amplitude. Matching these dynamics
to that of the circKF equations then allows us to determine the network parameters required for this implementation. The
network we present in the main text is formulated for a finite number of neurons, and here we will further demonstrate that it
is straightforward to change between those two representations. In fact, any network coefficients for the infinite-neuron network
are chosen such that they also describe those used for the finite-neuron network in the main text.

A. Network that exactly implements the circKF. Let us make an ansatz for a continuous-space, linear network dynamics with an
additional non-linear interaction term:

drt(ϕ) = − 1
τ

rt(ϕ)dt + g (rt(ϕ)) · rt(ϕ)dt + (W ∗ rt) (ϕ) dt + Iext
t (ϕ). [S49]

Here, rt(ϕ) denotes the activity of a neuron identified by its preferred HD ϕ at time t, and Iext
t (ϕ) is an external input. Due

to the circular symmetry, the recurrent connectivity function W (∆ϕ) only depends on the relative distance ∆ϕ between two
neurons’ preferred HD. Further, (W ∗ rt) (ϕ) := 1

π

∫
dϕ′W (ϕ− ϕ′)rt(ϕ) denotes a convolution.

We consider the decomposition of the activity profile rt(ϕ) in terms of its Fourier modes:

rt(ϕ) = 1
2r0(t) +

∞∑
k=1

(
reven

k (t) cos kϕ + rodd
k (t) sin kϕ

)
[S50]

= 1
2r0(t) +

∞∑
k=1

r̃k(t) cos k(ϕ−Ψk(t)). [S51]

Note, that the Fourier coefficients reven
k (t) and rodd

k (t) are related to the coefficient’s amplitude r̃k(t) and phase Ψk(t) via a
Cartesian to polar coordinate transformation. Taking the derivative on both sides (in the amplitude-phase form) results in:

drt(ϕ) = 1
2 dr0(t) +

∞∑
k=1

(
cos k(ϕ−Ψk(t)) dr̃k(t) + kr̃k(t) sin k(ϕ−Ψk(t)) dΨk(t)

)
. [S52]

Thus, we can determine the dynamics of the Fourier coefficients r0, r̃k, and Ψk by Fourier-transforming Eq. [S49], and
subsequently matching the coefficients in the Fourier modes:

dr0(t) = 1
π

∫ π

−π

dϕ (drt) =
(
− 1

τ
+ w0

)
r0(t) dt− g(rt)r̃0(t) dt + Iext

0 (t), [S53]

dr̃k(t) = 1
π

∫ π

−π

dϕ cos k(ϕ−Ψk(t)) (drt)

=
(
− 1

τ
+ weven

k

)
r̃k(t) dt− g(rt)r̃k(t) dt + Ik(t) cos(Φk(t)−Ψk(t))

[S54]

dΨk(t) = 1
kr̃k(t)

1
π

∫ π

−π

dϕ sin k(ϕ−Ψk(t)) (drt)

= wodd
k

k
dt + Ik(t)

kr̃k(t) sin(Φk(t)−Ψk(t)),
[S55]

where we used the Fourier decompositions W (∆ϕ) = w0
2 +

∑∞
k=1

(
weven

k cos(k∆ϕ) + wodd
k sin(k∆ϕ)

)
and Iext

t (ϕ) = I0
2 +∑∞

k=1 Ik cos(k(ϕ− Φk)). Note that here, Ik refers to the k-th Fourier amplitude of the input, and not to the modified Bessel
function. Furthermore, in the main text we restrict the discussion to w0, weven

1 and wodd
1 and denote them wconst ≡ w0,

wsym ≡ weven
1 , and wasym ≡ wodd

1 , respectively. Setting Ψ1(t) = µt and r̃1(t) = κt, the dynamics of the first Fourier components
in amplitude-phase form read:
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dµt = wodd
1 dt + I1(t) sin(Φ1(t)− µt), [S56]

dκt =
(
− 1

τ
+ weven

1

)
κt dt− g(rt)κt dt + I1(t) cos(Φ1(t)− µt) [S57]

Comparing Eq. [S19] (µt from circKF) with Eq. [S56] and Eq. [S20] (κt from circKF) with Eq. [S57] allows us to determine
conditions for network parameters and external input in Eq. [S49], such that the circKF is exactly implemented in the dynamics
of the network’s first Fourier mode:

Even recurrent connections weven
1 = 1/τ,

Odd recurrent connections wodd
1 = κv

κϕ + κv
vt,

External input strength I1 = κzdt,

External input phase Φ1(t) = zt,

Nonlinear inhibition g(rt) = f(κt(rt))
2(κϕ + κv) .

Here, vt denotes the (observed) angular velocity with reliability κv, and zt the HD observation with reliability κz. The nonlinear
inhibition needs to be able to compute the amplitude κt from the network activity rt(ϕ). Note that this does not impose
any conditions on network parameters which do not affect the first Fourier component dynamics, for instance, higher order
recurrent interaction strengths wk with k ̸= 1. These can in principle be chosen freely.‡ Note that, in this simple network,
angular velocity observations modulate the first odd component of the recurrent connectivity matrix. This is biologically
unrealistic, and will be addressed once we move to the multi-population network further below.

To summarize, one potential (out of many possible) network dynamics that implements the circKF in the dynamics of its
first Fourier components reads:

drt(ϕ) = − 1
τ

rt(ϕ) dt− f(κt(rt))
2(κϕ + κv)rt(ϕ)dt + 1

τ
(cos ∗rt) (ϕ)dt + κv

κϕ + κv
vt (sin ∗rt) (ϕ) dt + Iext

t (ϕ). [S58]

Please consult Sec. D for an additional term required to account for rt being a stochastic process. We have not included this
term here, as it only becomes important in the dt→ 0 limit, and does not contribute additional intuition about the network’s
operation.

B. Network with quadratic nonlinearity. While the network we have derived so far implements the cricKF exactly, its activity
decays to zero in the absence of external inputs, such that it is not an attractor network. In this section we will instead use the
quadratic approximation to the circKF, which will lead to the Bayesian ring attractor we discuss in the main text. To do so,
we use the following nonlinearity for the inhibitory interaction:

g(rt)rt = wquad(M ∗ [rt]+)(ϕ) ◦ rt(ϕ), [S59]

with rectification nonlinearity [·]+ and a constant function M = π
2 . Here, ◦ denotes the Hadamar (piecewise) product. In the

main text, we wrote this interaction as g(rt)rt → wquad
(

π
∑N

i=1[r(i)
t ]+

)
· rt, which is equivalent, but less technical.

We assume rt to be dominated by its first Fourier component, such that the other orders become negligible, i.e. rt(ϕ) =
κt cos(ϕ− µt) +R with R small.§ We find

(M ∗ [rt]+)(ϕ) ≈ 1
π

∫ π

−π

dϕ′
π

2
[
κt cos(ϕ′ − µt)

]
+ = κt. [S60]

Fourier-transforming the nonlinearity with respect to the amplitude-phase form yields:

1
π

∫ π

−π

dϕ′ cos(ϕ′ − µt)g(rt)rt = wquad

π

∫ π

−π

dϕ′ cos(ϕ′ − µt) (M ∗ [rt]+)(ϕ′) · rt(ϕ′)

= wquad

π
κt

∫ π

−π

dϕ′ cos(ϕ′ − µt) rt(ϕ′) = wquadκ2
t .

[S61]

Thus, the dynamics of the first Fourier amplitude of a network with this nonlinearity is given by:

‡Practically, we chose them such that higher-order Fourier modes and the zero-th mode decay reasonably fast, to produce a unimodal activity bump.
§Alternatively, we can consider additionally convolving rt with a cosine before applying the rectification, effectively filtering out the desired mode.
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dκt =
(
− 1

τ
+ weven

1

)
κt dt− wquadκ2

t dt + I1(t) cos(Φ1(t)− µt). [S62]

The network parameters can be tuned such that the dynamics match that of the quadratic approximation of the circular
Kalman filter (Eq. [S19] and [S21]), analogously to the previous section. This yields the following network parameters for a
Bayesian ring-attractor network:

Even recurrent connections weven
1 = 1/τ + 1

κϕ + κv
,

Odd recurrent connections wodd
1 = κv

κϕ + κv
vt,

External input strength I1 = κzdt,

External input phase Φ1(t) = zt,

Quadratic inhibition wquad = 1
κϕ + κv

,

C. Continuous vs. discrete networks. The analysis we have presented above is valid for a continuum of neurons, i.e. N →∞,
that span a continuum of preferred HDs. Formally, this implies that the difference in preferred HD between two ’neighboring’
neurons converges to zero, ∆ϕ := ϕi − ϕj = 2π

N
→ 0. In the text and for our simulations, we used a discretized network, where

we assumed the preferred HDs of the neurons to be equally spaced, but finite.
It is straightforward to go back and forth between these two representations (cf. (9)): in a discretized network, rt denotes a

vector of neural activities, indexed by their preferred HD ϕi, which becomes a function rt(ϕ) for a continuous network. Likewise,
connectivity matrices W become functions with two arguments W (ϕi, ϕj), and matrix multiplications become integrals. The
circular symmetry of HD implies that the entries of a connectivity matrix only depend on the relative distance between two
neurons, and not on absolute position, such that for a connectivity matrix W we can write Wij = W (ϕi, ϕj) = W (ϕi − ϕj).
Thus, we can write matrix multiplications as convolutions (assuming the vectors and matrix are ordered with respect to their
preferred HD):

(W · rt)i =
N∑

j=1

Wijrt,j = N

2π

N∑
j=1

Wijrt,j∆ϕ [S63]

N→∞,∆ϕ→0→ N

2π

∫ π

−π

dϕ′W (ϕ, ϕ′)rt(ϕ′) = N

2π

∫ π

−π

dϕ′W (ϕ− ϕ′)rt(ϕ′) = N

2 (W ∗ rt) (ϕ). [S64]

where we defined the convolution as above. Thus, to ensure consistency between the coefficients of the matrices used in the
main text and the coefficients of the connectivity functions we used in our analysis in the SI, we scaled the connectivity matrices
in the main text by a factor 2

N
.

D. Stochastic correction [Technical]. The derivation in the previous section did not take into account that due to the dependence
on the angular velocity observations vt, the phase Ψk(t) is actually an Itô stochastic process, and hence the network activity rt

is, too. Thus, when performing a change of variables, such as the expansion Eq. [S52], we have to use Itô’s lemma (Eq. [S24]),
and expand up to second order in Ψk(t) (we have seen that the dynamics of the amplitude r̃k(t) is independent of vt, and thus
only carries first order terms):

drt(ϕ) = d

(
1
2r0(t) +

∞∑
k=1

r̃k(t) cos k(ϕ−Ψk(t))

)
[S65]

= 1
2dr0(t) +

∞∑
k=1

(
cos k(ϕ−Ψk(t))dr̃k(t) + kr̃k(t) sin k(ϕ−Ψk(t))dΨk(t)

− 1
2k2r̃k(t) cos k(ϕ−Ψk(t))(dΨk(t))2

)
,

[S66]

This implies that, if we take the effect of stochastic processes into account, comparing the Fourier coefficients in amplitude-phase
form will not single out the dynamics of the amplitude dr̃k, because there are now two terms proportional to cos k(ϕ−Ψk(t)).
Fortunately, the problem can be solved “backwards” using the analogy to coordinate transforms in Section C, thereby restricting
ourselves to the first Fourier mode (higher modes are analogous): First, we perform the Fourier transform of the dynamics in
Cartesian coordinates, i.e., with respect to cos(ϕ) and sin(ϕ). We then note that changing this into amplitude-phase form
is mathematically equivalent to a coordinate transform between the natural parameters of the von Mises distribution and
the µ,κ-parametrization. Next, we require that such a coordinate transform ought to result in the dynamics for µt and κt in
Eq. [S56] and [S57]. Using the analogy to Section C, we find that an additional decay term − 1

2
κv/κϕ

κv+κϕ
rt(ϕ)dt is needed in the
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network dynamics, which implements the Itô correction on the level of the natural parameters (cf. Eq. [S26]). Apart from this
additional decay, the conditions on the other network parameters remains unchanged.

This stochastic correction is not strictly needed to gain intuition about the theory, and if anything, the use of continuous-time
stochastic calculus seems to make things less intuitive. Practically, we used an additional decay term in Eq. [S58] whenever the
angular velocity observations were drawn from the true generative model and the time step dt was small enough to justify the
notion of “continuous time”, which was the case for all our simulations.
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4. Details on Drosophila-like network

Relying on large-scale connectomics data of the Drosophila HD system (10, 11), we now ask if a Bayesian ring attractor can be
implemented in a network that obeys biological network connectivity constraints. Here we show how the motifs of this network
– and, by extension, any biological ring attractor network – could potentially implement dynamic Bayesian inference.

A. Connectivity motifs in the Drosophila HD system connectome. The ring attractor in the Drosophila HD system is composed
of three core cell types, called EPG, PEN1 and ∆7 neurons (10–12), cf. Fig. 4A,B. HD is represented as a bump of neural
activity in the EPG population (13). These neurons are recurrently connected with excitatory PEN1 neurons. When the fly
turns, this differentially activates PEN1 neurons in the right and left brain hemispheres, and because PEN1 neurons have
asymmetric (shifted) projections back to EPG neurons, they can rotate the bump of EPG activity in accordance with the fly’s
rotation (14, 15). This motif effectively establishes the velocity-modulated odd recurrent connectivity required to initiate turns
in ring attractor networks (Fig. 4D). Moreover, EPG neurons are recurrently connected with inhibitory ∆7 neurons, which
establishes broad inhibition (Fig. 4E). Finally, EPG neurons receive inhibitory inputs from so-called ER neurons, which send
HD information to EPG neurons (16–18) (Fig. 4F). In summary, the fly’s HD system is equipped with the basic motifs to
implement a Bayesian ring attractor.

B. A multi-network model mimicking the Drosophila HD system connectome. The main idea of the idealized network in the
previous section was to tune the network parameters such that the circKF (or the quadratic approximation of the circKF) was
implemented in the coefficients of the first Fourier mode. Here, we will use the connectome of the fruit fly Drosophila (10) to
build a recurrent neural network, and show that the quadratic approximation of the circKF can be implemented in such an
architecture by determining the coefficients analogously. Thereby, we first approximate the connectivity matrices describing
this connectome (Fig. 4B) by analytically accessible functions, which nonetheless retain the main features of this connectivity
(as outlined, e.g., in (12)), and preserve the motifs that implement the ring-attractor in the Drosophila HD system (see review
in (19), cf. Fig. 4C). We in turn analytically determine the conditions for the coefficients of the connectivities between (rather
than within) the different network populations, such that the dynamics of the first Fourier components match that of the
quadratic approximation of the circKF.

Specifically, we consider five neuronal populations: an HD population, rHD, which we designed to track HD estimate and
certainty with its bump parameter dynamics, two angular (AV+ and AV−) velocity populations, rAV +

and rAV− , which are
tuned to head direction and are differentially modulated by angular velocity input, an inhibitory (INH) population, rINH , and
a population Iext that represents external input, that is, the HD observations. As before, the population activities r(ϕ) are
functions of preferred HDs, ϕ, but we will drop the argument ϕ to keep the notation uncluttered.

We start with the following ansatz for a network dynamics:

drHD
t =− 1

τHD
rHD

t dt + WHD←HD ∗ rHD
t dt + WHD←AV + ∗ rAV +

t + WHD←AV− ∗ rAV−
t dt

+
(
WHD←INH ∗ [rINH

t ]+
)
◦ rHD

t dt + Iext
t ,

[S67]

drAV +
t = 1

τAV +

(
−rAV +

t + (oAV + vt)WAV +←HD ∗ rHD
t

)
dt, [S68]

drAV−
t = 1

τAV−

(
−rAV−

t + (oAV − vt)WAV−←HD ∗ rHD
t

)
dt, [S69]

drINH
t = 1

τINH

(
−rINH

t + WINH←HD ∗ [rHD
t ]+ + WINH←INH ∗ rINH

t

)
dt. [S70]

From the connectivity profile ((10), cf. Fig. 4B), we make the following ansatz for the connectivity functions (which results in
Fig. 4C):

WHD←HD(∆ϕ) = cHD
0 + cHD

1 [cos ∆ϕ] , [S71]

WAV±←HD(∆ϕ) = cAV±←HDδ(∆ϕ), [S72]

WHD←AV±(∆ϕ) = cHD←AV±
[
sin
(

∆ϕ± π

4

)]
+

, [S73]

WINH←HD(∆ϕ) = cINH←HD
0

2 + cINH←HD
1 cos(∆ϕ), [S74]

WINH←INH = cINH←INH
0

2 + cINH←INH
1 cos(∆ϕ), [S75]

WHD←INH(∆ϕ) = cHD←INHδ(∆ϕ). [S76]
In what follows, we will derive the conditions for the connection strengths in this ansatz that allow an implementation of the
quadratic approximation of the circKF in the dynamics of the first Fourier component. Thereby, we make the assumption
that the leading order of the HD population activity rHD

t is a cosine, i.e. rHD
t (ϕ) = rHD

0 (t)
2 + κt cos(ϕ − µt) +R, and that

higher-order Fourier modes are negligible. We further assume that the time constants of the AV± and INH populations, τAV±

and τINH , are much smaller than τHD of the HD population, which allows us to assume that the activity in those populations
is stationary.
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B.1. AV± population. As described above, the integration of turning signals in the fruit fly is modulated through differential
activation of PEN1 neurons (our AV± population) in the right and left brain hemispheres that asymmetrically project back
to EPG neurons (our HD population) (14, 15). This motif implements the effective asymmetric angular velocity-dependent
recurrent connectivity that is needed to rotate the activity in ring-attractor networks (20, 21). Thus, we will tune the
parameters in the HD→AV± →HD circuit such that the resulting effective odd recurrent connectivity contribution wodd

1 (i.e.,
that proportional to sin(ϕ− µt) implements the turn in the activity profile due to angular velocity integration, cf. Eq. [S55]).

As a first step, we compute the activities in the AV± populations. It is straightforward to check that, if the time constant
τAV ≪ τHD, the activity in the AV populations can be described by its stationary activity at every point in time:

rAV±
t = (oAV ± vt)WAV±←HD ∗ rHD

t = cAV±←HD(oAV ± vt)
1
π

∫ π

−π

dϕ′δ(ϕ− ϕ′)rHD
t (ϕ′)

= cAV±←HD(oAV ± vt) rHD
t .

[S77]

Expanding the connectivity function from the HD to the AV± populations in a Fourier series yields:

WHD←AV± = cHD←AV±
[
± sin(∆ϕ± π

4 )
]

+
= cHD←AV±

(
1
π

+ 1
2
√

2
cos(∆ϕ)± 1

2
√

2
sin(∆ϕ)

)
+R, [S78]

allowing us to compute the effective recurrent contributions in the HD population that is mediated via this network motif:

WHD←AV + ∗ rAV +
t = cHD←AV±cAV±←HD(oAV + vt)

1
π

∫ π

−π

dϕ′
(

1
π

+ 1
2
√

2
cos(ϕ− ϕ′) + 1

2
√

2
sin(ϕ− ϕ′) +R

)
rHD

t (ϕ′)

= cHD←AV±cAV±←HD(oAV + vt)
(

rHD
0
π

+ κt

2
√

2
cos(ϕ− µt) + κt

2
√

2
sin(ϕ− µt)

)
,

[S79]

WHD←AV− ∗ rAV−
t = cHD←AV±cAV±←HD(oAV − vt)

(
rHD

0
π

+ κt

2
√

2
cos(ϕ− µt)−

κt

2
√

2
sin(ϕ− µt)

)
, [S80]

and thus

WHD←AV + ∗ rAV +
t +WHD←AV− ∗ rAV−

t

= cHD←AV±cAV±←HD

(
2oAV

π
rHD

0 + κt
oAV√

2
cos(ϕ− µt) + κtvt

1√
2

sin(ϕ− µt)
)

.
[S81]

Thus, this motif implements an effective odd recurrent connectivity with wodd
1 = cHD←AV±cAV±←HD

√
2 vt. We require that the

effective odd recurrent connectivity is the same as in the Bayesian ring attractor, that is,

wodd
1 = cHD←AV±cAV±←HD

√
2

vt
!= κv

κϕ + κv
vt, [S82]

and thus the condition for the coefficients reads:

cHD←AV± =
√

2
cAV±←HD

κv

κϕ + κv
. [S83]

Interestingly, due to the offset oAV we also obtain a recurrent contribution to the activity baseline r0(t), and a contribution
to the even first order recurrent connectivity,

weven, AV
1 = cHD←AV±cAV±←HD oAV√

2
[S84]

= κv

κϕ + κv
oAV .. [S85]

We will return to this when computing the recurrent connectivities within the HD populations below.

B.2. INH population.. In our network, the recurrent interaction with the INH population implements the quadratic inhibition. In
the same way we tracked the effective odd recurrent through the AV± recurrent loop, we will here determine the effective
quadratic interaction strength wquad as a function of the network parameters, and then tune it in order to implement the
quadratic approximation of the circKF.
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To determine the activity in the INH population, we first expand
[
rHD

t

]
+ in its Fourier series:

[
rHD

t

]
+ ≈

[
rHD

0
2 + κt cos(ϕ− µt)

]
+

≈ rHD
0 ϕc

2π
+ κt

π
sin ϕc +

(
κt

π
ϕc + rHD

0
2π

sin ϕc

)
cos(ϕ− µt) +R

≈ rHD
0
4 + κt

π
+
(

κt

2 + rHD
0
π

)
cos(ϕ− µt) +R, [S86]

with cutoff angle ϕc = arccos
(
− κt

2rHD
1

)
≈ π

2 + rHD
0
2κt

for κt ≫ rHD
0 /2. With the dynamics of the INH population in Eqs. [S70],

and the connectivity functions in [S74] and [S75], we can write down the dynamics of the first two Fourier coefficients in the
INH population:

τINH drINH
0 =

(
−rINH

0 +
(

rHD
0
2 + 2

π
κt

)
cINH←HD

0 + cINH←INH
0 rINH

0

)
dt, [S87]

τINH drINH
1 =

(
−rINH

1 +
(1

2κt + 1
π

rHD
0

)
cINH←HD

1 + cINH←INH
1 rINH

1

)
dt. [S88]

Assuming again that the dynamics in the INH population is much faster than in the HD population, τINH ≪ τHD, we can
write down the stationary activities of the activity profile in the INH population:

rINH
0 =

rHD
0
2 + 2

π
κt

1− cINH←INH
0

cINH←HD
0 , [S89]

rINH
1 =

1
2 κt + 1

π
rHD

0

1− cINH←INH
1

cINH←HD
1 . [S90]

Plugging this into Eq. [S67], we obtain the change in the amplitude of the first Fourier mode through the interaction with
the INH population:(

WHD←INH ∗ [rINH
t ]+

)
· rHD

t = cHD←INH

(
rINH

0
2 + rINH

1 cos(ϕ− µt)
)
· rHD

t (ϕ)

= cHD←INH

(
rINH

0
2 κt + rINH

1
rHD

0
2

)
cos(ϕ− µt) +R

= cHD←INH
[

cINH←HD
0

π(1− cINH←INH
0 )

κ2
t +
(

cINH←HD
0

1− cINH←INH
0

+ cINH←HD
1

1− cINH←INH
1

)
rHD

0
4 κt

+ cINH←HD
1

π(1− cINH←INH
1 )

(rHD
0 )2

2

]
cos(ϕ− µt). [S91]

The first term on the right hand side has our desired quadratic interaction. It matches that of the quadratic approximation of
the circKF wquad = 1/(κϕ + κv), if the following condition is fulfilled:

cHD←INH = − 1
κϕ + κv

π(1− cINH
0 )

cINH←HD
0

. [S92]

The other terms in Eq. [S91] are "nuisance" terms, which, if too large, may significantly interfere with the inference dynamics.
However, if rHD

0 is small compared to κt, which we confirmed in simulations to be generally the case, the effect of the nuisance
terms is negligible. This can further be stabilized by choosing |cINH←HD

1 | ≪ |1− cINH←INH
1 |. Interestingly, this implies that

certainty κt mainly governs the activity in the zero-th order of the INH activity (Eq. [S89]).

B.3. Recurrent excitation within HD population. In the same spirit as above, here we compute the effective even recurrent connectivity
of the network in order to match it with recurrent interaction weven

1 in the network implementation of the circKF. Starting
from the Fourier expansion of the recurrent connectivity,

WHD←HD = cHD
0 + cHD

1 [cos(∆ϕ)]+ ≈ cHD
0 + cHD

1
π

+ cHD
1
2 cos(∆ϕ) +R, [S93]

we determine the change in activity due to the recurrent interaction within the HD population:

WHD←HD ∗ rHD
t =

(
cHD

0 + cHD
1
π

)
rHD

0 + cHD
1
2 κt cos(ϕ− µt) +R. [S94]
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Recall that the interaction with the AV± populations also induced an effective even recurrent connectivity (Eq. [S85]), such
that the overall even recurrent connectivity in the network is given by,

weven
1 = weven, HD

1 + weven, AV
1 = cHD

1
2 + κv

κϕ + κv
oAV

!= 1
τ

+ 1
κϕ + κv

. [S95]

This defines the following condition for the recurrent interaction within the HD population:

cHD
1 = 2

(
1
τ

+ 1
κϕ + κv

− κv

κϕ + κv
oAV

)
. [S96]

The zero-order contribution in Eq. [S94] multiplying cHD
1 is significant, and exceeds the first-order interaction in magnitude,

which makes the network unstable. We thus require a negative constant recurrent connectivity to balance this zero-order
contribution, chosen such that this contributions in the dynamics of rHD

0 decays over time:

2
(

cHD
0 + cHD

1
π

)
!

<
1
τ

, [S97]

and thus we arrive at our final condition:
cHD

0 <
1

2τ
− cHD

1
π

. [S98]

B.4. Summary of network connectivities. To summarize, we analytically determined that the following connectivity matrices in
the network dynamics in Eq. [S67]-[S70] implement the quadratic approximation of the circKF in the HD population. As a
reminder, these network dynamics are:

drHD
t =− 1

τHD
rHD

t dt + WHD←HD ∗ rHD
t dt + WHD←AV + ∗ rAV +

t + WHD←AV− ∗ rAV−
t dt

+
(
WHD←INH ∗ [rINH

t ]+
)
◦ rHD

t dt + Iext
t ,

drAV +
t = 1

τAV +

(
−rAV +

t + (oAV + vt)WAV +←HD ∗ rHD
t

)
dt

drAV−
t = 1

τAV−

(
−rAV−

t + (oAV − vt)WAV−←HD ∗ rHD
t

)
dt

drINH
t = 1

τINH

(
−rINH

t + WINH←HD ∗ [rHD
t ]+ + WINH←INH ∗ rINH

t

)
dt.

Recurrent excitation within HD population:

(WHD←HD)ij = 2
NHD

(
cHD

0 + cHD
1
[
cos
(
ϕHD

i − ϕHD
j

)]
+

)
,

with cHD
1 = 2

(
1

κϕ + κv
+ 1

τHD
− oAV κv

κϕ + κv

)
, cHD

0 <
1

2τ
− cHD

1
π

.

[S99]

Recurrent excitation between HD and AV+ and AV- populations:

(WAV±←HD)ij = cAV±←HDδij , [S100]

(WHD←AV±)ij = 2
NAV±

cHD←AV±
[
sin
(

ϕHD
i − ϕAV±

j ± π

4

)]
+

,

with cHD←AV± =
√

2
cAV±←HD

κv

κϕ + κv
.

[S101]

Recurrent inhibition between HD and INH populations:
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(WINH←HD)ij = 2
NHD

(
cINH←HD

0
2 + cINH←HD

1 cos
(
ϕINH

i − ϕHD
j

))
, [S102]

(WINH←INH)ij = 2
NINH

(
cINH

0
2 + cINH

1 cos
(
ϕINH

i − ϕHD
j

))
,

with |cINH←HD
1 | << |1− cINH

1 |
[S103]

(WHD←INH)ij = cHD←INHδij ,

with cHD←INH = − 1
κϕ + κv

π(1− cINH
0 )

cINH←HD
0

.
[S104]

Activities of the EXT population were assumed to give rise to a bump-shaped inhibitory input opposite of the HD observation,
loosely related to how ring neurons mediate such input to the EPG neurons (17, 18). We thus modeled this bump-shaped
input to the HD population directly without explicitly representing a dynamics of the EXT population.

External input:

Iext
i,t = −2κzdt

[
cos(ϕHD

i − zt + π)
]

+ . [S105]

The network dynamics still has a considerable number of degrees of freedom. That is, the baseline oAV , network connectivity
strengths cAV±←HD, cINH←HD

0 , cINH←HD
1 , cINH

0 , cINH
1 , and time scales τHD, τAV + , τAV− and τINH can essentially be chosen

freely. If the number of neurons N differs between populations, the δij ’s can be replaced by a normalized, Gaussian-shaped
kernel with a finite width. For our analytical results to hold, we require τHD ≫ τAV + , τAV− , τINH . We further constrained the
network by choosing cINH←HD

0 > 0, cINH←HD
1 ≤ 0 and |cINH←HD

0 | > |cINH←HD
1 |, which leads to the broad excitatory input

into the INH population, and the formation of an ‘antibump’, similarly to the one observed in ∆7 neurons (12).

C. Drosophila-like network simulations and HD tracking performance. To demonstrate that the multi-population network can
indeed implement the quadratic approximation to the circKF, we measured its HD tracking performance and compared it to
the circKF and the Bayesian ring attractor.

We used the following parameters in the associated network simulations (Fig. 4G,H): κv = 5, T = 20, ∆t = 0.001, results are
averages over P = 5′000 simulations. Network architecture followed the full network in Eqs. [S67]-[S70], with baseline oAV = 0,
time scales τHD = 0.1, τAV + = τAV− = 0.01, τINH = 0.001, connection strengths cHD

0 = −0.2, cHD
1 = 0, cAV±←HD = 1,

cINH←HD
0 = 0.5, cINH←HD

1 = −0.5, cINH
0 = 0.1, cINH

1 = 0. Further, in the discretized dynamics we chose NHD = 100,
NAV + = 50, NAV− = 50, NINH = 100, and NEXT = 100.

As shown in Fig. 4G,H, the network simulations confirmed that this network indeed achieves a HD tracking performance
indistinguishable to that of our idealized Bayesian ring attractor network. Thus, even when we add the constraints dictated
by the actual connectivity patterns of neural networks in the brain, the resulting network is still able to implement dynamic
Bayesian inference.
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5. The impact of neural noise on inference dynamics

So far we have assumed the the only sources of noise were noisy inputs from angular velocity and HD observations. Here we
ask how the inference dynamics are impacted if the neurons that constitute the ring attractor are also noisy. We will do so in
three steps. First, we will make a qualitative observation of how such neural noise is expected to impact the dynamics of µt

and κt. Second, we will derive expressions for the impact of such noise on µt and κt for different noise models. Third, we will
ask how we can ensure that neural noise has a minimal impact on the performed inference. For all steps we return to our
single-population ring attractor whose dynamics are described by Eq. [S49], and assume that neural noise impacts the activity
of neuron j by

drt,j = h (rt,j) dWt,j , [S106]
where h(·) is a function of neural activity, and the dWt,j ’s are Brownian motion processes that are uncorrelated across neurons.
Different noise models correspond to different assumptions about the form of h(·). As for large population sizes N , individual
neural noise can be averaged out and will have limited impact (22). Therefore, we assume N to be sufficiently small for neural
noise to matter, but to be sufficiently large such that we can well-approximate various sums by their integral limit.

A. The qualitative impact of neural noise on inference dynamics. With neural noise, the population dynamics equation Eq. [S49]
becomes

drt(ϕ) = · · ·+ Iext
t (ϕ) + ηt(ϕ), [S107]

where Iext
t (ϕ) is our model’s (stochastic) external input, and the newly added ηt(ϕ) captures the activity perturbations induced

by neural noise. This shows that we can interpret neural noise as yet another stochastic input to the network. This implies
that this noise impacts the dynamics for ηt and κt (previously Eqs. [S56] & [S57]) through

dµt = · · ·+ I1(t) sin (Φ1(t)− µt) + η1(t) sin (ξ1(t)− µt) , [S108]
dκt = · · ·+ I1(t) cos (Φ1(t)− µt) + η1(t) cos (ξ1(t)− µt) , [S109]

where I1(t) and Φ1(t) are amplitude and phase of the first Fourier component of Iext
t (ϕ), and η1(t) and ξ1(t) are the analogous

quantities for the neural noise ηt(ϕ). As this noise is uniform on the circle, its phase is also uniform on the circle, and its
amplitude is roughly constant (for some fixed N). This implies that both η1(t) sin (ξ1(t)− µt) and η1 cos (ξ1(t)− µt) will have
the same variance. Crucially, the HD estimate µt is by Eq. [S56] formed by integrating all of its terms, such that the added
noise term results in a diffusion of this estimate (22). The certainty κt, in contrast, by Eq. [S57] performs a leaky integration of
its term, such that it low-pass filters the noise — it somewhat perturbs κt, but its contribution will be bounded.

B. How neural noise quantitatively impacts the dynamics of µt and κt. To get a better quantitative understanding of the impact
of neural noise, we here derive expressions for its impact on µt and κt for different noise models. First, we will assess the
impact of the generic noise model, Eq. [S106] on the posterior parameters, x1 and x2, in their Cartesian form. Second, we
will translate this impact to polar coordinates, µ and κ. Third, we will consider three different noise models to see how those
impact the dynamics of µ and κ. To simplify notation we assume some fixed time t, and leave the ·t subscript implicit.

B.1. The impact of neural noise on x1 and x2. For finite N , x1 and x2 are computed as

x1 = 2
N

N∑
j=1

cos (ϕj) rj , x2 = 2
N

N∑
j=1

sin (ϕj) rj , [S110]

where ϕj is the preferred HD of neuron j, and where the 2/N pre-factor ensures appropriate normalization. The generic neural
noise model, Eq. [S106], thus leads to

dx1 = 2
N

N∑
j=1

cos (ϕj) h (rj) dWj , dx2 = 2
N

N∑
j=1

sin (ϕj) h (rj) dWj , [S111]

independent of the current population activity r (except through h(rj)). It can be shown that ⟨dxi⟩ = 0 for i ∈ {1, 2}, and that

cov (dx) = 4
N2

(
c2T

h2 cT diag
(
h2) s

cT diag
(
h2) s s2T

h2

)
dt, [S112]

where we have defined the N -element vectors c, s, and h with elements cj = cos (ϕj), sj = sin (ϕj), and hj = h (rj), where the
·2’s are element-wise, and where diag

(
h2) denotes a diagonal matrix with diagonal h2. Thus, the noise-induced evolution of x

is described by the two-dimensional process
dx = GdW , [S113]

with G given by

G = 2
N
√

c2T h2

(
c2T

h2 0
cT diag

(
h2) s

√
s2T h2c2T h2 − (cT diag (h2) s)2

)
, [S114]

such that cov (dx) = GGT dt. Overall, this shows that neural noise will not cause a drift of x but will introduce (potentially)
correlated noise in both x1 and x2.
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B.2. The impact of neural noise on µ and κ. To translate the impact of neural noise from natural parameters x to parameters (µ, κ),
let us consider µ and κ in turn.

The impact of noise on µ. We have µ = atan2(x2, x1), whose gradient and Hessian with respect to x are

∇xµ = 1
κ2

(
−x2
x1

)
, Hxµ = 1

κ4

(
2x1x2 x2

2 − x2
1

x2
2 − x2

1 −2x1x2

)
, [S115]

where we have used κ =
√

x2
1 + x2

2. Applying Itô’s Lemma to this mapping results in

dµ = 1
2Tr

(
GT HxµG

)
dt + (∇xµ)T GdW

= 4
κ4N2

((
c2T

h2 − s2T
h2
)

x1x2 + cT diag
(
h2) s

(
x2

2 − x2
1
))

dt

+ 2
κ2N
√

c2T h2

((
cT diag

(
h2) sx1 − c2T

h2x2

)
dW1 +

√
s2T h2c2T h2 − (cT diag (h2) s)2x1dW2

)
,

[S116]

containing both a drift (second-to-last line) and a diffusion term (last line).

The impact of noise on κ. We have κ =
√

x2
1 + x2

2 whose gradient and Hessian with respect to x are

∇xκ = 1
κ

(
x1
x2

)
, Hxκ = 1

κ3

(
x2

2 −x1x2
−x1x2 x2

1

)
. [S117]

Applying Itô’s Lemma to this mapping results in

dκ = 1
2Tr

(
GT HxκG

)
dt + (∇xκ)T GdW

= 2
κ3N2

(
s2T

h2x2
1 − 2cT diag

(
h2) sx1x2 + c2T

h2x2
2

)
dt

+ 2
κN
√

c2T h2

((
c2T

h2x1 + cT diag
(
h2) sx2

)
dW1 +

√
s2T h2c2T h2 − (cT diag (h2) s)2x2dW2

)
,

[S118]

again containing both a drift and a diffusion term.

B.3. Neural noise models. To get a better understanding of the resulting µ and κ dynamics, we will now consider different noise
models. In particular, we will consider additive, Poisson-like multiplicative, and Weber-like multiplicative noise. The difference
between Poisson-like and Weber-like multiplicative noise is that, for Poisson-like noise, the noise variance scales with neural
activity, whereas, for Weber-like noise, it is the noise standard deviation that scales with neural activity. While we make
no assumptions about the shape of population activity for the additive noise case, we will assume sinusoidal activity for
multiplicative noise

rj ≈ κ cos (µ− ϕj) + b = κ cos(µ) cos (ϕj) + κ sin(µ) sin (ϕj) + b = x1cj + x2sj + b, [S119]

where b denotes the baseline activity. This assumption is required to find analytical results, and is warranted by noting that
our single-population networks were designed to filter out higher-order Fourier components, such that their contribution should
be minimal.

Additive noise. For additive neural noise we assume h(rj) = hj = σnn, independent of neural activity. This leads to

c2T
h2 = s2T

h2 = N

2 σ2
nn, cT diag

(
h2) s = 0, [S120]

where we have taken the large-N integral limit for the involved sums. Substituting these expressions into Eqs. [S116] & [S118]
results in

dµ =
√

2σnn

κ2
√

N
(−x2dW1 + x1dW2) , [S121]

dκ = σ2
nn

κN
dt +

√
2σnn

κ
√

N
(x1dW1 + x2dW2) , [S122]

with moments

⟨dµ⟩ = 0, ⟨dκ⟩ = σ2
nn

κN
dt, [S123]

var (dµ) = 2σ2
nn

κ2N
dt, var (dκ) = 2σ2

nn

N
dt, [S124]

cov (dµ, dκ) = 0. [S125]

This shows that additive neural noise causes µ to only diffuse without introducing additional drift, and κ to both drift and
diffuse. The drift of κ is obvious in hindsight, as it corresponds to the on average increasing radius of a two-dimensional random
walk.
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Poisson-like multiplicative noise. For Poisson-like multiplicative noise we assume h(rj) = hj = α
√

rj such that, by Eq. [S106],
the noise variance, var (drj) = α2rjdt is linear in the neuron’s activity rj . Assuming population activity to be described by
Eq. [S119] results in

c2T
h2 = s2T

h2 = α2Nb

2 , cT diag
(
h2) s = 0. [S126]

where we have again taken the large-N integral limit for the involved sums. Substituting these expressions into Eqs. [S116] &
[S118] results in

dµ =
√

2bα

κ2
√

N
(−x2dW1 + x1dW2) , [S127]

dκ = α2b

κN
dt +

√
2bα

K
√

N
(x1dW1 + x2dW2) , [S128]

with moments

⟨dµ⟩ = 0, ⟨dκ⟩ = α2b

κN
dt, [S129]

var (dµ) = 2α2b

κ2N
dt, var (dκ) = 2α2b

N
dt, [S130]

cov (dµ, dκ) = 0. [S131]

The moments are the same as for the additive noise model with a baseline activity-dependent noise variance σ2
nn = α2b.

Weber-like multiplicative noise. For Weber-like multiplicative noise we assume h(rj) = hj = αrj such that, by Eq. [S106], the
noise standard deviation,

√
var (drj) = αrj

√
dt is linear in the neuron’s activity rj . Assuming again that population activity is

described by Eq. [S119] results in

c2T
h2 = Nα2

2

(1
4
(
x2

1 − x2
2
)

+ 1
2κ2 + b2

)
, s2T

h2 = Nα2

2

(1
4
(
x2

2 − x2
1
)

+ 1
2κ2 + b2

)
, cT diag

(
h2) s = Nα2

4 x1x2.

[S132]
Substituting these expressions into Eqs. [S116] & [S118] results in

dµ =
√

2α
√

1
4 κ2 + b2

κ2
√

N
√

1
4 (x2

1 − x2
2) + 1

2 κ2 + b2

(
−
√

1
4κ2 + b2x2dW1 +

√
3
4κ2 + b2x1dW2

)
[S133]

dκ = α2

κN

(1
4κ2 + b2

)
dt +

√
2α
√

3
4 κ2 + b2

κ
√

N
√

1
4 (x2

1 − x2
2) + 1

2 κ2 + b2

(√
3
4κ2 + b2x1dW1 +

√
1
4κ2 + b2x2dW2

)
. [S134]

with moments

⟨dµ⟩ = 0, ⟨dκ⟩ = α2

κN

(1
4κ2 + b2

)
dt, [S135]

var (dµ) = 2α2

κ2N

(1
4κ2 + b2

)
dt, var (dκ) = 2α2

N

(3
4κ2 + b2

)
dt, [S136]

cov (dµ, dκ) = 0. [S137]

In summary, neither noise model results in a drift in µ, but all cause its diffusion with a diffusion variance that depends
on the chosen noise model. As this diffusion holds irrespective of whether the system is at its attractor states, these results
generalizes previous results for diffusion close to the attractor state (22). Furthermore, all noise models result in a positive
drift in κ away from the origin, as well as a noise model-dependent diffusion variance. In all cases, both drift and diffusion
magnitude for both µ and κ drop with N , and so become negligible once the population becomes significantly large, again
generalizing the results in (22) to dynamics away from the attractor state.

C. Compensating for noisy neurons when performing inference. As we have seen, neural noise affects both the dynamics of
µ and κ. For all noise models, it adds a zero-mean diffusion to µ, and a positive drift and diffusion to κ. The additional
perturbations are all of order 1/N and so become negligible once the neural population becomes sufficiently large. For small
population sizes, however, it might introduce perturbations that significantly impact inference accuracy in the network filter,
or, in other words, to significantly deviate from the circular Kalman filter. Here we discuss how to qualitatively counter-act
these perturbations to keep their impact to a minimum.

Let us first focus on µ. Without neural noise, the circular Kalman filter already assumes µ a-priori to follow a zero-mean
diffusion on the circle, Eq. [S3], and additional diffusion due to noisy angular velocity observations, Eq. [S1]. Both reduce
certainty in the HD estimate, which the filter accounts for by a drop in κ, as implemented by a leak term in Eq. [S20]. The
additional zero-mean diffusion introduced by neural noise further reduces the HD estimate’s certainty and thus needs to be
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accounted for by an additional leak of κ whose strength depends on the noise model. Thus, the impact of neural noise on µ can
be adequately accounted for by an additional leak of κ.

The impact of neural noise on κ requires a similar counter-measure. Without neural noise, the leak in the dynamics of κ,
Eq. [S20], results in a leaky accumulation of all remaining terms. This also applies to diffusion introduced by neural noise:
it will be integrated with leak, resulting its impact to be bounded. The stronger the leak, the weaker its impact. The drift
introduced by neural noise has a different effect: if not accounted for, it would cause the inference of κ to be biased. In
particular, as the drift is positive for all noise models, it would result in an overestimation of κ and so in overconfidence of the
network filter. Fortunately, we can account for this drift with an additional leak term of the same size as the drift. Thus, the
impact of neural noise on κ results in bounded additional diffusion of κ, and a drift that can be accounted for by an additional
leak of κ.

To summarize, neural noise results in an additional, unavoidable diffusion of µ, and a drift and diffusion of κ, both of which
can be accounted for by an additional leak of κ. The exact expression for the required leak depends on the chosen noise model,
and for neither model precisely matches our Bayesian ring attractor’s exact architecture and parametrization. Therefore,
we used numerical optimization to find the parameters that maximize HD tracking performance rather than relying on the
above analytical expressions. As we show in the main text and Fig. S4, in light of neural noise, such a network with re-tuned
parameters outperforms one that is only optimally tuned for the noise-free case, as expected from the above analysis.

Anna Kutschireiter, Melanie A. Basnak, Rachel I. Wilson and Jan Drugowitsch 23 of 30



6. Supplementary Figures
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Fig. S1. Encoding the HD with linear probabilistic population codes. a) Tuning curves with respect to encoded HD estimate for small values of encoded certainty κt

are cosine-shaped. Here, we show tuning curves of 8 example neurons with κt = 1 (colors indicate preferred HD ϕi). b) Tuning curves with respect to HD estimate for
large values of encoded certainty κt are von-Mises shaped (same 8 example neurons as in a, but for κt = 10). c) Von Mises probability densities for different values of
encoded certainty κt and fixed mean µt = π

2 . Note that the density sharpens around the mean with increasing certainty. Inset shows vector representation of a von Mises
distribution with mean µt = π

2 , and, respectively, κt = 10 and κt = 1. d) Population activity profile (average neural firing rate conditioned on HD estimate µt and certainty
κt) encoding the von Mises densities with mean µt = π

2 and certainty κt = 1. Neurons are sorted by preferred HD ϕt. Colored dots correspond to activity of neurons with
tuning curves as in a). The phasor representation of the neural activity (inset) matches the vector representation of the encoded von Mises distribution in c. e) Population
activity profile encoding the von Mises densities with mean µt = π

2 and certainty κt = 10. f) Left: The amplitude (Max-Min) of the activity profile scales (approximately)
linearly with certainty κt, except for very small values of κt. Right: The population activity bump’s width (full width at half maximum, FWHM) is mostly unaffected by uncertainty
κt, and saturates at a finite value for large κt, unlike the von Mises distribution it encodes (e.g., b), whose FWHM approaches zero for large values of κt. g-j) The Fourier
component amplitudes of the population activity profile are mostly linear in encoded certainty κt, indicating that (i) the whole profile is scaled by κt, and that (ii) only focusing
on the first Fourier component in our analysis is justified. For the tuning curves, we used ξ = 1 without loss of generality.
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Fig. S2. Network inference performance is mostly independent of the number of neurons N in the Bayesian ring attractor network. Here, for each value of the
observation reliability κz and number of neurons in the network N we compute the circular average distance of the network’s HD estimate µT from the true HD ϕT at the end
of a simulation of length T = 20 from P = 10′000 simulated trajectories. The blue line (hidden below other lines) shows the performance of the quadratic approximation to
the circular Kalman filter that the networks aim to implement. The network parameters of the single-population network in Eq. [S49] were those of the Bayesian ring attractor,
i.e. weven

1 = 1
τ + 1

κϕ+κv
, wodd

1 = κv
κϕ+κv

vt, and wquad = 1
κϕ+κv

. Other simulation parameters were: κϕ = 1, κv = 1, and ∆t = 0.01.
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Fig. S4. Neural noise changes the optimal fixed point amplitude and decay speed. We simulated a network of N = 64 neurons with different levels of additive Gaussian noise
with variance σ2

nnδt to each neuron within each time step δt, for different fixed point amplitudes κ∗ and decay speeds β. As in main text Fig. 3D, the performance of each
network was assessed by its average inference accuracy over different HD observation information rates, weighted by a prior over these information rates (see Methods for
simulation details and parameters). Each panel shows this performance, relative to the best performance of a noise-free network, for a grid over values of κ∗ and β. As can be
seen, the optimal κ∗ and β that maximizes relative performance changes with σnn (purple dot), and differs from the best κ∗ and β for the noise-free network (light blue dot).
In particular, larger noise requires re-tuning the network to use a larger κ∗ and β.
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Fig. S5. Visualizing the HD tracking perfomance measure. To provide a better intuition for the used HD tracking performance measure we here show how a specific
distribution of HD tracking errors (horizontal axis, in degrees) relates to this performance measure. In particular, we drew 10000 samples from a von Mises distribution
µT − ϕT ∼ VM(0, κ), where each drawn sample simulates one single deviation of the estimated HD (i.e., the mean of the filter posterior, µT ) from the actual, true HD, ϕT .
The different panels show the histogram of simulated errors for different κ’s (see panel headings). Our filtering performance measure, that is, the absolute value of the first
circular average of the samples, can be computed for the von Mises distribution via |m1| = I1(κ)

I0(κ) (23). We confirmed numerically that this analytical expression matches
the circular average empirically determined from these simulated errors. Simulating HD tracking errors by draws from a von Mises distribution was here only performed for
convenience. The HD tracking errors arising in simulations of the filtering algorithms do not necessarily follow such a distribution.
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