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A key computation in building adaptive internal models of the external
world is to ascribe sensory signals to their likely cause(s), a process of
causal inference (CI). CI is well studied within the framework of two-
alternative forced-choice tasks, but less well understood within the cadre
of naturalistic action–perception loops. Here, we examine the process of dis-
ambiguating retinal motion caused by self- and/or object-motion during
closed-loop navigation. First, we derive a normative account specifying
how observers ought to intercept hidden and moving targets given their
belief about (i) whether retinal motion was caused by the target moving,
and (ii) if so, with what velocity. Next, in line with the modelling results,
we show that humans report targets as stationary and steer towards their
initial rather than final position more often when they are themselves
moving, suggesting a putative misattribution of object-motion to the self.
Further, we predict that observers should misattribute retinal motion more
often: (i) during passive rather than active self-motion (given the lack of
an efference copy informing self-motion estimates in the former), and
(ii) when targets are presented eccentrically rather than centrally (given
that lateral self-motion flow vectors are larger at eccentric locations during
forward self-motion). Results support both of these predictions. Lastly,
analysis of eye movements show that, while initial saccades toward targets
were largely accurate regardless of the self-motion condition, subsequent
gaze pursuit was modulated by target velocity during object-only motion,
but not during concurrent object- and self-motion. These results demonstrate
CI within action–perception loops, and suggest a protracted temporal
unfolding of the computations characterizing CI.

This article is part of the theme issue ‘Decision and control processes in
multisensory perception’.
1. Introduction
We do not directly access environmental objects and events. Instead, our
biological sensors (i.e. retina, cochlea, etc.) detect noisy, incomplete and often
ambiguous sensory signals. In turn, our brains ought to leverage these signals
to build adaptive internal models of the external world [1]. A key step in build-
ing these models is to ascribe sensory signals to their likely (and hidden)
cause(s), a process of causal inference (CI; [2–4]).

CI has been well studied in human psychophysics, and a growing body of
literature is starting to elucidate the neural mechanisms underpinning this com-
putation, both in human [5–10] and in animal models [11–13]. Namely, whether
localizing audio-visual stimuli [2,5,11], estimating heading [6,12], perceiving
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motion relations in visual scenes [9,10] or inferring the location
of one’s own body based on visual, tactile and proprioceptive
cues [7,8,13], humans and non-human primates behave as if
they hold and combine (sometimes optimally) multiple
interpretations of the same sensory stimuli. From a neural
standpoint, CI appears to be subserved by a cascade of concur-
rent interpretations; sensory areas may respond to their
modality of preference, intermediate ‘associative’ nodes may
always combine cues (sometimes called ‘forced-fusion’), and
finally higher-order fronto-parietal areas may flexibly change
their responses based on the causal structure inferred to gener-
ate sensory observations [4,14,15] (see [16,17] for similar
findings across time, from segregation to integration to causal
inference). If and how this inferred causal structure sub-
sequently and dynamically biases lower-level sensory
representations is unknown (but see [18]).

More broadly, the study of CI has heavily relied on static
tasks defined by binary behavioural outcomes and artificially
segregating periods of action from periods of perception
(see [19] for similar arguments). These tasks not only are a
far cry from the complex, closed-loop and continuous-time
challenges that exist in human behaviour, but may also limit
and colour our understanding of CI. For instance, while
feed-forward-only mechanistic models of CI may account for
decisions during two-alternative forced-choice tasks [20], our
brains (i) are decidedly recurrent, and (ii) largely dictate the
timing, content and relative resolution of sensory input via
motor output (i.e. active sensing). The focus on open-loop
tasks when studying CI also limits our ability to bridge
between CI and other foundational theories of brain function
[21]—particularly those derived from reinforcement learning,
which are best expressed within closed loops.

Here, we take a first step toward understanding CI under
closed-loop active sensing by studying how humans attribute
optic flow during navigation to self- and object-motion.
Namely, human observers are taskedwith navigating in virtual
reality and stopping at the location of a briefly flashed target,
much akin to ‘catching a blinking firefly’ (see [22–26]). The
virtual scene is composed solely of flickering ground plane
elements, and thus, when observers move by deflecting a joy-
stick (velocity control), the ground plane elements create optic
flow vectors. Observers continuously integrate this velocity
signal into an evolving estimate of position [27]. Importantly,
in the current instantiation of the task, the target itself may
move (i.e. object-motion; constant lateral motion within a
range from 0 to 40 cm s−1, either leftward or rightward).
Thus, in the case of concurrent self- and object-motion, obser-
vers must parse the total retinal motion into components
caused by self-motion and/or those caused by object-motion,
a process of CI.

First, we derive a normative account specifying how obser-
vers ought to intercept hidden and moving targets given their
belief about (i) whether retinal motion was (at least partially)
caused by the target moving, and (ii) if so, at what velocity.
Then, we demonstrate that humans’ explicit reports and steer-
ing behaviour concord with the model’s predictions. Further,
we support the claim that humans misattribute flow vectors
caused by object-motion to their self-motion by showing that
these misattributions are larger (i) when self-motion is passive
(i.e. lacking an efference copy) and (ii) when objects are pre-
sented eccentrically (such that object- and self-motion vectors
are congruent in direction). Lastly, via eye-movement analyses,
we show a gradual unfolding of behaviour during CI. Early
saccades are largely accurate and directed toward the last vis-
ible location of the target. Thus, during this time period
eye movements behave as if participants perceive targets
as moving. Subsequent gaze pursuit of the invisible target is
accuratewhen there is no concurrent self-motion, but is consist-
ent with the target being perceived as stationary during
concurrent self- and object-motion. Together, the results
demonstrate CI in attributing retinal motion to self- and
object-motion during closed-loop goal-directed navigation.
This opens a new avenue of study wherein we may attempt
to understand not only the perceptual networks underpinning
CI, but also the joint sensorimotor ones.
2. Results
(a) A normative model of intercept behaviour during

visual path integration
We identify behavioural signatures of CI during path inte-
gration toward a (potentially) moving target by formulating
a normative model (figure 1). We take the example of a briefly
visible target moving at a constant, potentially zero, speed
(i.e. no acceleration) and with a constant direction along a
lateral plane (i.e. side-to-side, figure 1a). The task of the
model is to form a belief about the target’s location and
velocity given a brief observation period (i.e. period over
which the target is visible), and then use this belief to navigate
and intercept the target (think of a predator intercepting its
prey, figure 2a). The observation period may occur while the
observer is stationary (and thus all retinal motion is caused
by object-motion), or during concurrent observer and object-
motion (and thus retinal motion has to be ascribed to
self and/or object). We model concurrent self- and object-
motion (versus object-motion only) by increasing the noise
associated with target observations (these being corrupted by
a concurrent flow field). For simplicity, within this work we
only consider linear trajectories wherein the model selects a
direction and duration over which to travel (figure 1a, middle
panel). We expect this trajectory to reasonably approximate
the steering endpoints of the continuously controlled steering
trajectories of our human participants.

On each trial, before making any observation, the
model assumes the target to be stationary with a certain prob-
ability, and to move otherwise (i.e. a prior for stationarity).
If moving, the model assumes that slower targets are more
likely than faster ones (i.e. a slow-velocity prior, [28,29]).
When the target is rendered visible, the model gathers noisy
observations of the target’s location (e.g. noisy percepts in
each video frame, potentially corrupted by a concurrent flow
field) that it uses to infer whether the target is stationary
or moving, and if moving, with what velocity. Once the
model has formed these target motion estimates, it uses a
simple steering policy in which it moves a certain distance
(determined by a velocity and optimal stopping time) along
a straight-line trajectory to best intercept the target (figure 1a,
see Methods and the electronic supplementary material for
details).

Simulating the model across multiple trials led to two
predictions. The first prediction is that whether the target is
perceived as stationary or moving should depend on the
target’s actual velocity, the observation time, and observation
noise (i.e. ‘no self-motion’ versus ‘self-motion’, respectively
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Figure 1. Predicted behavioural signatures of causal inference when navigating to intercept a briefly observed moving target. (a) Task and trajectories of a nor-
mative model. We derived the normative strategy for intercepting a briefly presented target that provided the model with an uncertain estimate of the target
velocity and whether the target was moving at all. Top: the model first estimates whether the target is stationary or moving. Middle: we assumed that the
model aimed to intercept the target by travelling along a straight line at a certain angle (θ*) and for a certain distance (velocity × duration, vat*). To compensate
for the model overshooting or undershooting the target (given uncertainty in path integration, see bottom panel), we assessed the model’s perceived velocity by
computing when the model’s trajectory intercepted the target’s path. The middle panel shows a schematized example, while the bottom panel shows an example
simulation including the best estimate endpoint (orange) and full posterior (shades of black). (b) Stationary reports. The model perceived the target as stationary if
its noisy velocity estimate fell below a velocity threshold (dotted vertical lines). Noise in the velocity estimates resulted in a bell-shaped fraction of stationary reports
when plotted over the target’s true velocities. For a Bayesian decision strategy, and in contrast to simpler heuristics, the velocity thresholds increased for larger
observation noise induced by self-motion (red versus black) and for shorter observation times (left versus right). The bell-shaped curves widened accordingly, and
the point at which they intersected the 0.5 proportion (grey dashed line) changed. We highlight this threshold change here for the self-motion versus no self-motion
case by the circles and associated black arrows. (c) Perceived target velocities. Causal inference causes the perceived velocities to be biased toward zero for small
target velocities, and to approach true target velocities (down-weighted by the slow-velocity prior) for larger target velocities. This bias increases for larger obser-
vation noise (red versus black) and shorter observation periods (left versus right). (b,c) Mean (lines) and s.d. (shaded area, (c) only) across 1000 simulated trajectories
for each target velocity, ranging from −40 to 40 cm s−1 in steps of 2.5 cm s−1.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220344

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 A

ug
us

t 2
02

3 
in black and red; figure 1b). Noisy observations during concur-
rent self-motion imply that a moving target might be mistaken
for a stationary one, in particular if this is a priori deemed
likely. Our model defaults to such a stationary target percept
as long as the target velocity estimate remains below a specific
velocity threshold (figure 1b, dotted vertical lines). Noise in
the target velocity estimates thus leads to a bell-shaped
relationship between the probability of a stationary target per-
cept and the target’s actual velocity. This relationship is
modulated by observation time and observation noise magni-
tude: both larger observation noise magnitudes and shorter
observation times require stronger evidence to perceive a
target as moving (figure 1b, black versus red and left versus
right). Our model implements this by increasing the threshold
on the target velocity estimate. This change in threshold pro-
vides a test for whether observer (i.e. human) behaviour is
sensitive to changes in the observation quality, in line with
rational Bayesian behaviour. If the moving/stationary
decision is instead implemented by a simpler threshold on
the target velocity estimate that is insensitive to such changes,
then the target velocity that leads to a probability of stationary
percepts of 0.5 would not shift with a change in observation
noise or time (in contrast to the arrows shown in figure 1b).
Observing such a shift (figure 2) rules out this simpler
heuristic model with fixed threshold.

The second prediction relates the target’s true velocities to
those perceived by the model. In each simulated trial, the
model uses the target motion estimate to steer along a straight
trajectory that maximizes the likelihood of intercepting
the target, while accounting for standard path integration
properties (e.g. increasing location uncertainty with distance
travelled, see Methods and [22]). To estimate our model’s
perceived target velocity, we intersected a straight line con-
necting steering start- and endpoints with the line that
the target moved along (which was the same across trials;
figure 1a, middle panel). This procedure compensates for the
steering endpoint occasionally overshooting or undershooting
the target’s location, given noisy path integration and speed
priors (see [22] and below). Plotting these perceived velocities
against true target velocities revealed characteristic S-shaped
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Figure 2. Intercepting a briefly visible moving target by path integration demonstrates features of causal inference. (a) Experimental protocol and setup. Participants
are placed in a virtual scene composed of intermittently flashing textural elements providing an optic flow signal when participants are moving. Subjects are in
closed-loop, at all times being in control of their linear and angular velocity. When the target has an independent motion in the environment (dashed black arrow)
and subjects move toward it (red arrows), the retinal motion of the target (solid black arrow) is composed of both object- and self-motion components. Inset
additionally shows flow vectors. FOE (in green) indicates the focus of expansion. (b) Stationary reports. The proportion of trials in which participants reported the
target as stationary (y-axis) is plotted as a function of target velocity (x-axis), whether the subject was moving (self-motion, red) or not (no self-motion, black)
during target presentation, and target observation time (left versus right panels). Circles denote means across subjects, and error bars represent ±1 s.e.m. Pale lines
in the background show data for individual subjects. (c) Example steering trajectories and quantification. Left: six example trials (arbitrarily staggered). Bird’s-eye
view of the target’s starting (green circle) and ending (red circle) locations, as well as individual trajectories (dashed black). The distance between the start of the
dashed black line (origin) and the target’s starting location is always 300 cm. Right: To estimate the perceived target velocity, we computed for each trial the
distance between the target’s initial location and the location where the target’s trajectory intersects a straight line connecting the human’s starting and
ending locations. This recapitulates the definition from figure 1 and defines the lateral displacement of an individual trajectory above and beyond the starting
location of the target, while also considering the depth overshooting. (d ) Perceived target velocity. The perceived target velocity (as quantified in (c), y-axis))
is plotted as a function of actual target velocity (x-axis), whether the subject was moving (self-motion, red) or not (no self-motion, black) during target pres-
entation, and target observation time (left versus right panels). Circles denote means, and error bars represent ±1 s.e.m. Pale dots in the background show data for
individual subjects.
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curves (figure 1c). For large target velocities, the perceived
velocities linearly increase with target velocities, but consist-
ently underestimate them owing to the slow speed prior.
Smaller target velocities reveal signatures of CI: as small
target velocities occasionally make the target appear station-
ary, the perceived velocities are further biased toward zero.
Both larger observation noise magnitudes and shorter obser-
vation times expand the range of true target velocities for
which the perceived velocities are biased toward zero
(figure 1c, black versus red and left versus right), in line
with the stationarity reports (figure 1b).

In summary, therefore, according to the normative model,
if concurrent self- and object-motion leads to increased
observation noise (vis-à-vis a condition with no concurrent
self-motion), then we ought to expect (i) a larger velocity
range over which targets are reported as stationary, and
(ii) a characteristic S-shaped curve where observers more
readily navigate toward the starting rather than ending
location of targets, particularly when object velocity is not
very high (and thus unambiguous).
(b) Human observers perform causal inference when
navigating during concurrent object-motion

We test predictions of the model by having human observers
(n = 11) navigate by path integration to the location of
targets that could be either stationary (i.e. no object velocity)
or moving with different velocities relative to the virtual
environment (figure 2a, dashed black arrow denotes object
velocity). As in the model, targets moved at a constant speed
(range from 0 to 40 cm s−1) and with a constant lateral direction
(i.e. leftward or rightward, if moving). Further, at the end of
each trial participants explicitly reported whether they
perceived the target as moving or not relative to the scene.
Most importantly, in different blocks of trials the observers
themselves could either be stationary (i.e. labelled ‘no self-
motion’ and requiring participants to maintain a linear
velocity under 1 cm s−1 for 1 s for targets to appear) or
moving during the time period when the target was visible
(i.e. labelled ‘self-motion’ and requiring participants to main-
tain a linear velocity over 20 cm s−1 for 1 s for targets
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to appear, seeMethods for further detail). The optic flow caused
by self-motion introduces additional observation noise
and requires the parsing of total flow vectors into self- and
object-components.

Explicit stationarity reports were well accounted for by
Gaussiandistributions (mean r2 = 0.74).As expected, participants
most readily reported targets as stationary in theworldwhen the
object velocity was close to 0 (mean of Gaussian fits pooled
across ‘self-motion’ and ‘no self-motion’ conditions; 75ms obser-
vation time: μ=−4.65 × 10−4; 150 ms observation time: μ= 9.2 ×
10−3), regardless of the target observation time (p= 0.47).
Most importantly, as predicted by the model, during concurrent
self- and object-motion (red, figure 2b) participants reported tar-
gets as stationary at increasing object velocities, both for lower
(75 ms; Gaussian standard deviation, mean ± s.e.m., no self-
motion: 10.89 ± 2.37 cm s−1; self-motion: 29.39 ± 7.06 cm s−1;
paired t-test, p= 0.021) and higher (150 ms; no self-motion:
4.59 ± 0.51 cm s−1; self-motion: 15.15 ± 3.01 cm s−1; p= 0.0025)
observation times (figures 1b and 2b). This suggests that
participants putatively misattributed flow vectors caused by
object-motion to self-motion.

We similarly analysed the endpoints of participants’ steer-
ing behaviour. This behaviour was heterogeneous, with
participants frequently stopping at the target’s end location
(figure 2c, top left and right; examples of stationary and
moving targets), but also at times navigating to the starting
and not ending target location (figure 2c, middle left) or
navigating to some intermediary location (figure 2c, bottom
left). Likewise, participants often overshot targets in depth
(figure 2c, middle and bottom right (also see [22,24]), radial
response divided by radial target distance, no self-motion =
1.44 ± 0.08; self-motion = 1.32 ± 0.09; no self-motion versus
self-motion, t = 1.55, p = 0.15). To quantify this performance,
for each trial we computed a perceived target velocity analo-
gously to the modelling approach (figures 1a and 2c). Results
demonstrated that, on average, subjects underestimated the
target’s velocity (linear fit to no self-motion condition, grand
average slope = 0.82 ± 0.08; slope = 1 indicates no bias), and
this effect was exacerbated during low observation times
(figure 2d, slopes of linear fits, 75 versus 150 ms observation
times paired t-test, p = 0.05). Interestingly, when targets were
presented during concurrent self-motion (figure 2d, red), inter-
mediate target velocities were perceived (or at least steered
toward) as if moving more slowly than when the same object
velocity was presented in the absence of self-motion
(figure 2d, red versus black, paired ANOVA interaction term,
75 ms observation time, p = 8.12 × 10−5; 150 ms observation
time, p = 1.53 × 10−9; Bonferroni-corrected p < 0.05 for 75 ms
observation time at −20, −6 and +10 cm s−1, and for 150 ms
observation time at −20, −10 and +10 cm s−1). This is precisely
the behaviour predicted by the model (compare figure 1c and
figure 2d), wherein CI causes the perceived target velocities
to be biased toward zero for small and intermediate velocities,
and to approach true target velocities for larger target
velocities. Only relatively slow target velocities are biased
toward zero as these may not be unambiguously ascribed to
object-motion.

(c) Steering behaviour suggests a misattribution of flow
vectors during concurrent self- and object-motion

To further test the possibility that during concurrent object-
motion and path integration participants may misattribute
flow vectors related to the object and self, we can make two
further qualitative predictions. First, we predict that the
location of the target at its onset will affect how object- and
self-motion derived flow vectors are misattributed. That is,
early in trials, participants move forward, toward the
target. During this forward self-motion, lateral flow vectors
on the retina—i.e. those matching the direction of target
movement—are essentially null straight-ahead and have
much greater speed in the periphery (figure 2a, inset).
Thus, we predict that flow vectors should be more readily
misattributed under our current protocol for eccentric,
rather than central, targets. Second, within the current
closed-loop experiment, self-motion is not estimated solely
based on optic flow signals, but also by an efference copy
of hand movements (and thus joystick position, which
drives virtual velocity). In turn, we can predict that if self-
motion during object-motion were passive (i.e. no efference
copy), the estimate of self-motion would be more uncertain,
and thus putatively more amenable to misattribution
between object- and self-motion cues. We test these qualitat-
ive predictions while focusing our analysis on (1) the 150 ms
target observation time given that participants are more accu-
rate in this condition, and (2) steering behaviour (versus
explicit reports) given that these are an implicit measure of
CI and less prone to response biases [30].

We test the first prediction by dividing the dataset into
trials for which the target was presented centrally (i.e. within
−5° and +5°; 48.5% of total dataset) or eccentrically (i.e.
within −10° and −5°, or within +5° and +10°). As shown in
figure 3a, during both central and eccentric presentations, tar-
gets were seemingly perceived as if moving less rapidly
during self-motion rather than during no self-motion. Thus,
evenwhen dividing our dataset in two (and thus reducing stat-
istical power) concurrent self- and object-motion resulted in
targets being perceived as slower. To quantitatively ascertain
whether flow vectors were more readily misattributed during
eccentric rather than central presentations, for each condition
(central versus eccentric) and target velocity we computed
the difference in perceived target velocity (self-motion minus
no self-motion). This difference is illustrated in figure 3b, and
statistical contrasts indicated that the impact of self-motion
was greater for eccentric rather than central presentation
for targets moving at −10 and 20 cm s−1 (red versus black,
paired ANOVA object velocity × self-motion condition inter-
action term, p = 0.03, post hoc comparisons at each velocity,
p < 0.05 Bonferroni-corrected at −10 and 20 cm s−1). The fact
that eccentricity of the target most readily impacted velocity
perception of intermediate speeds (approx. 10 and 20 cm s−1)
concords with the modelling results (figure 1c, ‘S-curves’)
suggesting that the impact of concurrent self-motion during
object-motion is most prominent when retinal motion may
not be unambiguously attributed to a given cause (e.g. to the
target during high object velocity). The effect sizes at these
intermediate speeds (i.e. 10 and 20 cm s−1) were large
compared with a hypothesis suggesting no effect (i.e. y = 0 in
figure 3b, central targets: Cohen’s d = 1.03; eccentric targets:
Cohen’s d = 1.19), and of small to moderate magnitude when
contrasting central and eccentric targets (Cohen’s d = 0.35).
For further corroboration that eccentric targets were more
likely to be perceived as stationary (relative to central targets),
we fitted the difference in perceived velocity (self-motion
versus no self-motion, data from figure 3b) to sinusoidal func-
tions (amplitude, phase and frequency as free parameters).
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Figure 3. Misattribution of optic flow vectors during concurrent self- and object-motion is exacerbated for eccentric targets and during passive rather than active
self-motion. (a) Effect of target location. Perceived target velocity (y-axis, as estimated based on steering endpoint) as a function of true target velocity (x-axis),
whether participants were moving (red; self-motion) or not (black; no self-motion) while the target was visible, and whether targets at onset were central (left) or
eccentric (right). Circles represent means, error bars denote ±1 s.e.m., and pale dots in the background show data for individual subjects. (b) Impact of self-motion
on perceived object velocity as a function of target location. Difference in perceived target velocity as a function of self-motion condition (self-motion − no self-
motion; or red − black from (a), and whether targets were central ( purple) or eccentric (green) at onset. Circles indicate means, error bars denote ±s.e.m., and pale
dots in the background show data from individual subjects. (c) Active versus passive self-motion. Similar to (a), but panels are separated as a function of whether
self-motion during target presentation was active (i.e. closed-loop; left, data are reproduced from figure 2d, right) or passive (i.e. open-loop; right). (d ) Impact of
active versus passive self-motion on perceived object velocity. Similar to (b), but separated according to whether self-motion during target presentation was active
( purple) or passive (green).
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These fits were of good and equal quality across target
locations (central R2 = 0.65 ± 0.07; eccentric R2 = 0.64 ± 0.09;
p = 0.89). Importantly, the amplitude of these sinusoids were
larger for eccentric (0.205 ± 0.03) than for central target
locations (0.094 ± 0.014, p = 0.01), indicating a larger perceptual
bias in the former condition. Phase (p = 0.50) and frequency
( p = 0.12) were not different across target locations.

To test the second prediction, we conducted an additional
experiment (same participants but on a different day,
see Methods) wherein participants’ linear velocity during
target presentation (and only during this time period)
was under experimental control and was varied from
trial to trial (either 0 cm s−1 or a Gaussian profile ramping
over 1 s to a maximum linear velocity of 200 cm s−1). Angular
velocity during this period was always held at 0° s−1). In turn,
we contrast the impact of self-motion on perceived target
velocity either during closed-loop, active navigation
(figure 3c, left, same data as in figure 2d, 150 ms observation
time) or during passive self-motion (figure 3c, right). Firstly,
we note that the passive data replicate the observation
that intermediate target velocities were perceived as slower
than when the same object velocity was presented in
the absence of self-motion (figure 2c, passive, red versus
black, paired ANOVA interaction term, p = 3.68 × 10−10;
Bonferroni-corrected p < 0.05 at −20, −10, +10 and
+20 cm s−1, all Cohen’s d > 0.7). Further, as above, for both
active and passive conditions we compute the difference in
perceived target velocity between self-motion and no self-
motion conditions. Results show that when targets moved
at a velocity of −20 and +20 cm s−1 (figure 3d; ANOVA
object velocity × active versus passive interaction term, p =
0.04; post hoc comparisons, p < 0.05, Bonferroni-corrected at
−20 and 20 cm s−1), the misattribution of flow vectors
during self-motion was greater during passive rather than
active self-motion. The difference between active and passive
conditions (at −20 and +20 cm s−1) was relatively small in
effect size (Cohen’s d = 0.24), an observation that is perhaps
not surprising given that within the context of this exper-
iment the major contributors to self-motion estimates are
likely the optic flow and (the lack of) vestibular signals, not
the presence or absence of efference copies. As further
corroboration, fitting sinusoidal functions to the difference
in perceived target velocity as a function of self-motion
(data from figure 3d ) again suggested larger perceptual
biases (i.e. in amplitude parameter) during passive (0.14 ±
0.01) than active (0.09 ± 0.01) self-motion (p = 0.002; differ-
ence in R2, p = 0.25; phase, p = 0.18; frequency, p = 0.14).
Together, these results support our qualitative predictions,
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suggesting that optic flow vectors were misattributed during
concurrent self- and object-motion.

(d) Eye movements suggest a temporal cascade from
segregation to integration to causal inference

Lastly, we attempt to leverage the continuous-time nature of
the task to gain insight into the time-course of the compu-
tations supporting CI during closed-loop navigation. Namely,
the above analyses were restricted to trajectory endpoints, the
outcome of the computation. However, we may also use the
eye movements occurring during and near the time of target
presentation, which is the critical period during which the
task-relevant inference ought to occur.

Eyemovementswere composed of a rapid, ballistic saccade
(figure 4a, thin lines showexample trials and thicker lines show
mean values, arrows indicate the mean latency to saccade
offset for eccentric targets) followed by a more protracted
smooth pursuit (figure 4a, slow drift after arrow). In prior
work, we have demonstrated that humans (and non-human



Figure 4. (Overleaf.) Saccade and smooth pursuits during and following the target presentation. (a) Example lateral gaze position. Top panel shows gaze (eye + head)
direction along the lateral plane for targets far to the right ( positive values: +9 to +10°). Bottom panel shows gaze direction along the lateral plane for targets far to the
left. Thin grey lines are examples (no self-motion condition), while the thick black line is the average. Arrows represent the mean latency of saccade. These representative
data show a ballistic saccade (marked by the arrows) followed by smooth pursuit. (b) Saccade landing locations along the lateral plane for a representative subject. Top:
lateral gaze location (in degrees) at saccade offset as a function of the target’s initial (onset) location (also in degrees). Bottom: as above, for target offset location (i.e. last
visible location). Dashed line shows the identity, while solid line shows the best linear fit. Individual dots represent trials. (c) Coefficients (absolute value) for a regression
accounting for saccade offset location as a function of target onset and offset location. Grey circles with thin error bars denote individual subjects and their s.e., while black
circles with thick opaque and error bars show the mean and s.e.m. Coefficients were larger for the offset than onset target location, for both the no self-motion and self-
motion conditions. (d ) Lateral gaze location at saccade offset as a function of target offset. Target offset locations were categorized in 21 bins (every degree, from−10 to
+10°) and gaze offset location was averaged for each subject within these bins. Circles show means across subjects, and error bars represent ±1 s.e.m. Dashed grey line is
the unity-slope diagonal, demonstrating that subjects slightly undershot targets, but were largely accurate. (e) Baseline-corrected lateral gaze position after saccade offset
during no self-motion (left) and self-motion (right) conditions. The time-course of gaze (500 ms after saccade offset) shows modulation as a function of the target velocity
(gradient: from warm to cold colours,−40 to +40 cm s−1) in the no self-motion condition, but no modulation during the self-motion condition. Solid lines are averages
across all subjects. Dashed lines show the evolving location of targets. ( f ) Smooth pursuit velocity as a function of target velocity and self-motion condition. During self-
motion (red), gaze velocity (y-axis) was not modulated as a function of target velocity (x-axis). By contrast, gaze velocity did accurately track target velocity in the no
self-motion condition (black). Circles show means across subjects, and error bars represent ±1 s.e.m. Dashed grey lines show y = 0 and y = x.
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primates) intuitively saccade to the visible target, and then
track it via smooth pursuit, even when hidden ([23,26]).
Unlike in these prior studies, however, here the target itself
moved, and the presentation times were half as long (300 ms
before versus maximum of 150 ms here). Thus, the saccade
itself happens after target offset (figure 4a). In turn, saccades
and gaze pursuit may aim toward the target onset position,
its final visible offset location, an intermediate location, and/
or track an evolving location.

To examine saccades, we expressed gaze location along azi-
muth by adding eye-in-head orientation and head orientation.
Similarly, we expressed the onset and offset locations of the
target in polar coordinates. As shown in figure 4b for a repre-
sentative subject, saccades were well accounted by both the
onset (representative subject r2 = 0.83, mean ± s.e.m.: 0.81 ±
0.01) and offset (representative subject r2 = 0.88, 0.87 ± 0.01)
target location, yet better by the latter than the former
(paired t-test, t10 = 14.74, p = 4.12 × 10−8; self-motion and no
self-motion conditions considered jointly). In general, partici-
pants were reasonably accurate, but tended to undershoot
the lateral location of targets with their gaze (onset, slope:
0.77 ± 0.03; offset: 0.79 ± 0.03; onset versus offset, paired
t-test, t10 = 7.44, p = 2.18 × 10−5). To ascertain whether humans
saccade to the initial target location or incorporate knowledge
of object-motion and saccade to its offset location, we fitted a
regression model (y � 1þ b1onsetþ b2offset) with β1 and β2
respectively weighting the target onset and offset locations
and y being the measured lateral gaze. As shown in figure 4c,
subjects placed more weight on the target offset than onset
locations (onset versus offset, no self-motion and self-motion,
paired t-test, both t > 2.21 and p < 0.04). Similarly, while the
offset regressor was significant for 11 (no self-motion) and 8
(self-motion) of the 11 subjects, the onset regressor was signifi-
cant for 9 (no self-motion) and 4 (self-motion). These results
replicate the early observation that humans [31] (and monkeys
[32]) can make accurate eye movements to moving targets, and
that observers are able to programme the saccade not to where
the target is when its position enters the oculomotor system,
but rather to an estimate of where the moving target will be
at the end of the saccade [33]. Finally, given (i) our interest in
comparing between a concurrent object- and self-motion con-
dition requiring CI, and an object-motion only condition not
requiring CI, and (ii) the above evidence that saccade behav-
iour was mostly dictated by the target’s offset location,
we binned the latter and examined whether gaze to target
offset location was modulated by self-motion. Results
showed no impact of self-motion on the landing saccade pos-
ition (figure 4d, unpaired ANOVA, interaction term, p = 0.95).
Thus, subjects’ initial inference of target position, as reflected
by saccades, does not appear to be affected by misattribution
of retinal velocity to object-motion versus self-motion.

We similarly examined the smooth pursuit that occurred
after saccade offset. That is, for each trial we epoched and
baseline-corrected the 500 ms of eye movements following
saccade offset. We split trials as a function of target velocity
and self-motion condition. Strikingly, as shown in figure 4e
(means across all subjects), while smooth pursuit was modu-
lated by target velocity in the no self-motion condition, it was
not during concurrent self- and object-motion. We quantify
this effect by computing the mean velocity of eye dis-
placement across the 500 ms following saccade offset. This
analysis reveals no dependence of eye velocity on target
velocity in the self-motion condition (one-way ANOVA,
F10,110 = 0.41, p = 0.93), and the presence of a strong modu-
lation when object-motion was presented alone (one-way
ANOVA, F10,110 = 21.7, p = 6.66 × 10−22, figure 4f ). In fact,
the gaze velocity along azimuth matched the target velocity
in the absence of self-motion (one-way ANOVA on the differ-
ence between target and gaze velocity, F10,110 = 0.75, p = 0.67).

Together, the pattern of eye movements shows largely
accurate saccading to the target offset regardless of the self-
motion condition, followed by smooth pursuit of the target,
which is absent in the case of concurrent self- and object-
motion, in contrast to the object-motion only condition and
our prior work (where the target never moved; [23,26]).
That is, during the no self-motion condition gaze velocity
matches that of targets, while it is null after concurrent self-
and object-motion. Crucially, during smooth pursuit, the
target is invisible in both cases, such that this difference is
not simply a visually driven effect.
3. Discussion
Awide array of studies have argued that human perception is
scaffolded on the process of CI: we first hypothesize a genera-
tive structure (i.e. how ‘data’ are generated by the world), and
then use this hypothesis in perceiving [2,5–10,14–16,30,34–40].



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220344

9

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 A

ug
us

t 2
02

3 
As such, some [3] have argued that CI is a unifying theory of
brain function. Here, our main contribution is the derivation
of CI predictions for a more naturalistic and continuous-time
task, and the demonstration of these signatures during closed-
loop active sensing and navigation. Further, we demonstrate
how using continuous-time tasks may allow us to index the
temporal unfolding of computations that mediate CI.

We take the example of concurrent self- and object-motion
where observers have to infer whether flow vectors on their
retina are generated entirely by self-motion, by object-motion,
or by some combination of the two. Empirically, we show
that, in line with the derived predictions, humans are more
likely to report moving targets as stationary at high velocities
during concurrent self-motion. Similarly, during concurrent
self- and object-motion, observers navigate to locations closer
to the initial target location, as if the target were not moving.
This effect is most pronounced when targets move at
intermediate velocities: those that cannot be easily ascribed to
a single interpretation, either self- or object-motion. We further
support the claim that observers misattribute flow vectors
caused by object-motion to self-motion by testing and corro-
borating two additional qualitative predictions. First, we note
that lateral flow vectors at the focus of expansion are essentially
null when moving forward and toward the focus of expansion
(see inset in figure 2a). Thus, in the current setup there should
be less misattribution of flow vectors when targets are pre-
sented centrally (i.e. near the focus of expansion), and this
prediction was confirmed (figure 3b). Second, we highlight
that our estimates of self-motion are not solely derived from
optic flow, but also from efference copies of motor commands,
among other signals. Thus, we ran a second experiment
in which the self-motion experienced during object-motion
was not under the subjects’ control. We argue that passive
self-motion, by virtue of lacking efference copies ofmotor com-
mands that are present during active self-motion, should result
in a less certain estimate of self-motion and thus in a greater
likelihood of misattributions. This prediction was also con-
firmed (figure 3d). Together, these findings suggest that
observers perform CI when navigating in the presence of
objects that may or may not move.

The third and final experimental finding allowed us to gain
some insight into the time-course of the processes constituting
CI. That is, we show that saccades to hidden targets already
incorporate knowledge of the object velocity [31–33], with
target offset position accounting for a larger fraction of var-
iance than target onset position. The fact that these saccades
to target were largely accurate may suggest that, at the time
of saccade onset (approx. 200–300 ms from target onset),
object-motion was appropriately parsed from self-motion.
A prior study [11] has shown CI during saccades, but in
this study saccades were used as a reporting mechanism,
as opposed to allowing observers to use saccades in a natural
and continuous-time environment. Next, we show that
smooth gaze pursuit of the target following the initial saccade
was strikingly different between the self-motion and no self-
motion conditions. While in the no self-motion condition
gaze velocity showed a gradient consistent with the target
velocity, there was no modulation of gaze velocity by target
velocity in the self-motion condition. This difference cannot
be attributed to differences in optic flow, as at the time of
smooth pursuit (approx. 400–900 ms after target onset) partici-
pants were moving and experiencing optic flow in both
conditions. These results suggest that at the time of smooth
pursuit, flow vectors caused by object- and self-motion were
not properly parsed. Speculatively, these findings (i.e. parsing
at the time of saccades but not at the time of smooth
pursuit) are evocative of a cascade of events observed in
neural data [4,14–16] wherein primary sensory cortices segre-
gate cues, later ‘associative’ areas always integrate cues,
and finally ‘higher-order’ regions perform flexible CI. Interest-
ingly, the established neural cascade occurs earlier than the
herein described behavioural one (cf. fig. 4f in [17]; neurally,
segregation occurs between 0 and 100 ms post-stimulus
onset, forced integration occurs between 100 and 350 ms, and
CI thereafter).

From a mechanistic standpoint, our view of the literature
is that most others have suggested that a decision regarding
causal structure (e.g. optic flow ascribed to self and object
with varying degrees) subsequently biases perception and
perceptual biases (e.g. [12]). This hypothesis naturally arises
from the CI formalism, wherein mathematically one first
deduces causal structures, and then uses this inference in esti-
mating features of hidden sources in the environment [2].
This conjecture has received nascent empirical support,
with neural activity in the parietal cortex dynamically updat-
ing sensory representations to maintain consistency with the
causal structure inferred in premotor cortex [18]. However,
others have suggested that a purely feed-forward architecture
(with no feedback for instance from pre-motor to parietal
cortex) leveraging appropriately tuned neurons (i.e. ‘congru-
ent’ versus ‘opposite’ cells, see [41,42]) may be sufficient to
engender CI [20]. In our view, our results suggest a protracted
cascade of processing not unlike that described neurally
[14–17], wherein potentially early estimates demonstrate
segregation (i.e. saccades results), intermediate time points
show forced fusion (i.e. gaze pursuit results), and finally
latter time points flexibly demonstrate CI (i.e. steering
behaviour). Further, our results demonstrate CI within
closed action–perception loops. Nonetheless, whether this
protracted cascade and closed observer–environment
loop relies exclusively on feed-forward mechanisms or not
remains a question for further inquiry and likely will require
large-scale neurophysiology.

We must mention a number of limitations in the current
work. While our aim is to study CI within dynamic action–
perception loops, much of our analysis relied on specific
events frozen in time, and particularly at the end of trials
(e.g. trajectory endpoints and explicit reports). This was
somewhat mitigated by the eye-movement analyses and is a
reflection of (i) challenges associated with jointly modelling
CI, path integration and control dynamics, as well as (ii)
the fact that within the current paradigm inference over
object-motion occurs only once, during the observation
period. In future work we hope to leverage the full trajec-
tories generated by participants in attempting to intercept
moving, hidden targets. This, however, will require account-
ing for idiosyncrasies emanating from path integration (e.g.
putatively a slow-speed prior [22,24] and cost functions that
evolve with time and distance travelled [22,24,25]), as well
as derivation of optimal control policies (see [43–45] for
recent attempts to model continuous behaviour as rational,
and then invert this model to deduce the dynamics of internal
models). Similarly, at risk of losing generalizability, the mod-
elling approach could be expanded to explicitly take flow
vectors as input (i.e. ‘image-computable modelling’). More
generally, however, these next steps in our modelling
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approach are designed to account for evolving beliefs, and thus
require just that, behaviour reflecting a protracted unfolding
of an evolving belief. Examination of steering trajectories
(figure 2c) did not suggest frequent and abrupt re-routings, as
one would expect to occur during changing interpretations of
the target motion (e.g. from moving to stationary). Instead, it
appears that within the current paradigm observers made a
causal inference once, early in the trial and while the target
was visible. The complexity in properlymodelling and account-
ing for all aspects of the behaviour (i.e. CI, path integration,
control dynamics) also resulted in a lack of alternative models
tested. This will also be rectified by attempts to model the
task within the framework of inverse rational control [43–45],
wherein we can use reinforcement learning to hypothesize a
whole set of models (i.e. ‘forward models’) and then determine
which accounts best for human performance. Lastly, we must
acknowledge the relatively small sample size (n = 11), which
may have resulted in limited statistical power and thus
relatively small effect sizes (particularly in figure 3b,d).

Altogether, we derive normative predictions for how obser-
vers ought to intercept moving and hidden targets by inferring
(i) whether objects are independently moving in theworld, and
(ii) if so,withwhat velocity.We then support the conjecture that
humans perform CI in attributing flow vectors on their retina
to different elements (i.e. self and object) during navigation.
Lastly, we show that when allowed to evolve naturally in
time, behaviour may demonstrate a protracted unfolding of
the computations characterizing CI. In the past we have
shown that macaqueswill intuitively track the ongoing location
of moving and hidden targets [25]. Hence, the current results
demonstrating signatures of CI in attempting to ‘catch’
moving targets open the avenue for future studies of
naturalistic and closed-loop CI at the single-cell level.
4. Methods
(a) Participants
Eleven participants (age range = 21–35 years old; 5 females) took
part in the study. This number of participants was not determined
via statistical power calculation, but is larger than prior reports
employing a similar task (7 subjects [22] and 9 subjects [27]), and
two to three times as large as other ‘continuous psychophysics’
experiments [46,47]. All participants had normal or corrected-to-
normal vision, normal hearing, and no history of neurological
or musculoskeletal disorders. The experimental protocol was
approved by the University Committee on Activities Involving
Human Subjects at New York University.

(b) Experimental materials and procedure
Participants were taskedwith virtually navigating to and stopping
at the location of a briefly presented target (i.e. the ‘firefly’) via
an analogue joystick with two degrees of freedom (linear and
angular velocity; CTI Electronics, Ronkonkoma, USA). The explicit
instruction given was to stop ‘on top’ of the target and that if the
target were to move, it would move throughout the entire trial.
Visual stimuli were rendered via custom code in Unity (Unity
Technologies, San Francisco, USA) and displayed on a virtual re-
ality (VR) head-mounted display with a built-in eye tracker
(90 Hz; HTC VIVE Pro, New Taipei, Taiwan). The subjective
vantage point was set to a height of 100 cm above the ground,
and participants had a field of view of 110° of visual angle.

The virtual scene comprised ground plane textural elements
(isosceles triangles, base × height = 8.5 × 18.5 cm) that were
randomly positioned and reoriented at the end of their lifetime
(lifetime = 250ms; floor density = 1.0 elements per 1 m2). For
each trial, subjects were (programmatically) positioned at the
centre of the virtual world, and a target (a black circle of
radius 30 cm, luminance and colour matched to ground plane
triangles) was displayed at a radial distance of 300 cm, and
within a lateral range spanning from −10° to +10° (uniform dis-
tribution; 0° being defined as straight-ahead). In 10% of trials, the
target was visible throughout the duration of the trial. In the rest,
targets were presented for either 75 or 150 ms (equal probability).
In 25% of trials, the target did not move (i.e. object velocity =
0 cm s−1). In the remaining 75% of trials, the target moved later-
ally at 3, 6, 10, 20 or 40 cm s−1, either leftward or rightward
(equal probability). From a subjective standpoint, the experiment
was well balanced with regard to the probability of observing a
moving target. Namely, in the case of no concurrent self- and
object-motion (see below), 53.35% of trials were reported as
stationary (61.98 and 44.73% respectively for 75 and 150 ms
observation times). Further, in pilot experiments (different set
of participants, n = 7), we manipulated the fraction of trials in
which targets moved, and this variable did not significantly
impact stationarity reports (see electronic supplementary
material; range tested from 55 to 75% of trials in which the
target moved). Target presentation time, velocity and direction
were randomly interleaved across trials and within blocks.
Participants navigated toward the target with a maximum
linear velocity (vmax) of 200 cm s−1, and a maximum angular vel-
ocity (wmax) of 90° s

−1. In every trial, after participants stopped to
indicate their perceived location of the (hidden) target, they were
asked to explicitly report whether the target had moved or
not, by deflecting the joystick leftward (target did not move) or
rightward (target moved). Participants were informed that their
responses were logged via an auditory tone. No feedback on
performance was given. Inter-trial intervals were not defined to
participants (i.e. ground plane elements were always visible
and continuous with the previous frame, there was no transient
artefact indicating a new trial even when virtually participants
were instantaneously re-positioned to the origin of the virtual
environment at the beginning of each trial) and of random
duration (uniform) between 300 and 600 ms.

Every participant took part in two experiments, on separate
days (each session lasting approx. 1 h). Prior to each experiment
the subjects were allowed a dozen practice trials in which they
understood that, in the case of a non-zero velocity target, even
when invisible, the target kept moving (see [25] for evidence that
macaques also intuitively understand this). In the first experiment,
participants performed two blocks of 200 trials, inwhich theywere
always under full closed-loop conditions (i.e. motor output dic-
tated sensory input). In one block, targets were presented given
that participants were not moving (linear velocity <1 cm s−1; no
self-motion condition). In the other block, targets were presented
given that participants were moving (linear velocity >20 cm s−1;
self-motion condition). Block order was randomized across sub-
jects and participants were informed prior to each block whether
they had to ‘maintain a linear velocity’ (‘self-motion’ condition)
or remain static (‘no self-motion’ condition) for targets to appear.
In practice, all subjects adapted an all-or-none approach wherein
they would either deflect the joystick maximally (200 cm s−1)
or not at all (0 cm s−1) prior to target presentation. Deflecting
the joystick maximally during inter-trial intervals minimized
experimental time. Angular velocity was kept near zero (mean
absolute angular velocity during inter-trial interval less than
1° s−1 on 98.2% of trials) given that targets could appear either left-
ward or rightward from straight ahead. In the second experiment,
participants performed four blocks of 200 trials. Different from the
first experiment, here linear velocity was set (open-loop, under
experimental and not subject control) during the target presen-
tation. Linear velocity was either null (0 cm s−1; no self-motion
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condition) or had a Gaussian profile with peak amplitude equal to
200 cm s−1 (self-motion condition). Angular velocity was kept
fixed at 0° s−1 and thus passive motion during inter-trial interval
was always straight ahead. When participants were passively dis-
placed, the linear perturbation lasted 1 s, and the target was
presented during the peak of the perturbation (200 cm s−1) such
that it would be at a distance of 300 cm.After the perturbation, par-
ticipants gained full access to the control dynamics (as in
Experiment 1). Self-motion and no self-motion conditions were
interleaved within a single block in Experiment 2. In total each
participant completed 1200 trials.

(c) Modelling
We here provide a basic outline of the normative model. A more
detailed description is provided in the electronic supplementary
material. At the beginning of each trial, we assume the target to
be visible for some observation time T =Nδt, where δt is the dur-
ation of individual, discrete time steps in which our model is
formulated. These time steps can be thought of as the time
between individual video frames. While our results are indepen-
dent of the specific choice of δt, discretization simplifies the
model description and derivation of its properties. In the nth
time step the target’s true location is zn = zN− (N − n)vδt, where
zN is the target’s true location at the end of the observation
period, and where v is the target’s velocity. The target’s initial
location z1 is assumed to be drawn from a uniform distribution
over a wide range of values of z1. Its velocity is v = 0 (stationary
target, γ = 0) with probability 1− pγ and otherwise (moving
target, γ = 1) drawn from a normal distribution N(vj0,s2

0) with
mean zero and variance s2

0. This latter distribution effectively
implements a slow-velocity prior, which has been widely used
as an effective means of conceptually recapitulating known
biases in human perception [28,29,48] and neural tuning [48,49]
(also see [50] for a recent mechanistic explanation of the putative
origin of this prior). The observer has noisy observations,
xn|zn∼N(zn,σ

2/δt), whose variance is scaled by 1/δt to keep
the results invariant to the choice of δt (i.e. choosing a smaller
δt provides more, but individually less-informative observations
per unit time). Based on all observations, x1 :N≡ x1,… ,xN, the
model estimates the probability of the target being stationary,
p(γ = 0|x1 :N), and the target’s velocity p(v|x1 :N, γ = 1) if it is
moving. The first probability is used for its stationary reports
(figure 1b). Both are used to decide on the model’s steering
trajectory (figure 1c).

A lengthy derivation that is provided in the electronic
supplementary material yields the required posteriors. The
resulting expressions are rather lengthy and thus not detailed
here. We assume that the model reports that the target is station-
ary if p(γ = 0|x1 :N) > p(γ = 1|x1 :N), that is, if p(g ¼ 0jx1 :N) . 1=2,
which is the case if

1
2
log

12s2

12s2 þ T3s2
0
þ T6s2

0v̂
2

24s2(12s2 þ T3s2
0)

, log
1� pg
pg

,

where v̂ ¼ vjx1 :N , g ¼ 1h i is the mean estimate of the target’s vel-
ocity under the assumption that it is moving. This decision rule
imposes a threshold on this velocity estimate that depends on
observation noise magnitude σ2 and observation time T, and
leads to the stationary reports shown in figure 1b.
The model chooses the optimal steering angle and distance
to maximize the probability of intercepting the target. To do
so, we assume it uses the self-motion estimation model from
Lakshminarasimhan et al. [22] in which the uncertainty (here
measured as the variance of a Gaussian posterior over location)
grows as k2d2λ, where d is the distance travelled, and k and λ
are model parameters. For a given angle θ and travel time t (at
fixed velocity va) this provides a Gaussian posterior p(za|t,θ)
over 2-dimensional self-location za. Furthermore, assuming a
known initial target distance and a lateral target motion,
the model provides a similar posterior p(zo|x1 :N,t) over
2-dimensional target location at time t, given by a weighted
mixture of two Gaussians. The model then chooses t* and θ*
that maximize p(za = zo|x1 :N,t,θ), that is, the likelihood of
ending up at the target’s location when moving for some time
t* at angle θ* (see electronic supplementary material for respect-
ive expressions). Unfortunately, this maximization cannot be
performed analytically, and thus we find the maximum by
discretizing t and θ.

The model parameters were hand-tuned to provide a quali-
tative match to the human data. However, it is worth noting
that the qualitative model behaviour described in the main text
is generic (i.e. fine-tuning is not necessary). Owing to the
simple nature of the model, and the simplified steering (i.e. con-
trol) model that only moved along a straight line, we did not
attempt to achieve a quantitative match. The target was assumed
to be at a fixed, known distance of 4 m during the target obser-
vation period, and the observer moved at a constant va = 2 m s−1

thereafter. A priori, the target was assumed to be moving
with pγ = 0.3 and the standard deviation of its slow-velocity
prior was σ0 = 0.5 m s−1. Observation times were set to either
T = 0.075 s or T = 0.150 s, matching those of the experiment.
Observation noise was set to σ = 0.0004 m (no self-motion) or
σ = 0.001 m (self-motion). The path integration uncertainty
parameters were set to k = 0.5 and λ = 0.5 (Wiener diffusion).
Ethics. The experimental protocol was approved by the University
Committee on Activities Involving Human Subjects at New York
University (protocol 18-505).
Data accessibility. Data and code are available at: https://osf.io/
72e6w/. Additional figures and results are included in the electronic
supplementary material [51].
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CAUSAL INFERENCE WITHIN CLOSE ACTION-PERCEPTION LOOPS
SUPPLEMENTARY INFORMATION

We here describe in detail the normative model that we used in the main text to predict behavioral signatures of
causal inference.

1. TASK SETUP AND GENERATIVE MODEL

A visual target appears on the screen for T = Nδt seconds, or N time steps of size δt. While, for intuition, one can
think of these time steps as individual video frames, our formulation is independent of the choice of δt. The target
appears at location z1 and thereafter moves with velocity v. Therefore, its location in the nth time-step is given by

zn = z1 + (n− 1)vδt = zN + (n−N)vδt. (1)

Across trials, we assume the target to be moving (γ = 1) with probability p(γ = 1) = pγ , and to be stationary (γ = 0)
otherwise. When moving, its velocity is drawn from p(v|γ = 1) = N

(
v|0, σ2

0

)
, a normal distribution with zero mean

and variance σ2
0 . Overall, this leads to the prior over v to be given by

p(v) = p(v|γ = 0)p(γ = 0) + p(v|γ = 1)p(γ = 1) = (1− pγ)δ(v) + pγN
(
v|0, σ2

0

)
, (2)

where δ(·) is the Dirac delta function. This is our causal inference prior as it encapsulates the two different hypotheses
(stationary vs. moving target, γ = 0 vs. γ = 1) for what caused the sensory percepts, together with their associated
priors on the underlying latent target velocity. We assume a uniform prior over the target’s initial location z1 over a
bounded range, whose form we make more precise later.

In each time step, the observer makes a noisy observation xn of the target’s true location zn, distributed indepen-
dently across time as

xn|zn ∼ N
(
xn|zn, σ2/δt

)
. (3)

We here scale the observation’s variance by 1/δt, such that the overall amount of information that the observer
receives per unit time remains invariant to the choice of δt.

Having observed x1:N ≡ x1, . . . , xN , the observer wants to infer whether the target is moving or not, that is
p (γ = 1|x1:N ). Furthermore, they want to infer the target’s final location for a stationary target, p (zN |γ = 0, x1:N ), or
the target’s final location and velocity for a moving target, p (zN , v|γ = 1, x1:N ). In the next section we derive these
quantities. Following this, we turn to the question of how the observer uses these quantities to act upon them by
reporting whether the target is stationary or moving, and how they steer toward the target.

2. INFERRING THE TARGET LOCATION AND VELOCITY

Here, we first start with assuming that the target is stationary to find p (zN |γ = 0, x1:N ). Then, we assume a moving
target and compute p (zN , v|γ = 1, x1:N ). Lastly, we use the found expressions to derive p (γ = 1|x1:N ).

2.1. A stationary target, γ = 0. For the stationary case, we only need to find the posterior over the target’s single
location z as its velocity is fixed to zero. Then, it is easy to show that

p (z|x1:N ) ∝ p(x1:N |z) ∝ N
(
z|x̄, σ

2

T

)
, (4)

where we have implicitly conditioned on γ = 0, have assumed a uniform prior over z over the relevant range of z’s,
and have defined

x̄ =
1

N

N∑
n=1

xn, (5)

that is, the average observed location.
Causal inference also requires the marginal likelihood of x1:N , which is given by

p (x1:N ) =

∫
p (x1:N |z) p (z) dz

= pz0

∫ zmax

zmin

[
N∏
n=1

N
(
xn|z, σ2/δt

)]
dz

= pz0

(
δt

2πσ2

)N/2 ∫ zmax

zmin

e−
δt
∑N
n=1(xn−z)2

2σ2 dz,

| (6)

1
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where we assumed a uniform prior of probability p(z) = pz0 over a wide z-range from zmin to zmax. The integral
evaluates to ∫

e−
δt
∑N
n=1(xn−z)2

2σ2 dz = −
√

πσ2

2Nδt
e−

δt
∑N
n=1(xn−x̄)2

2σ2 erf

(
N (x̄− z)√

2Nσ2/δt

)
, (7)

where the sum in the exponential equals Nvar (x), that is N times the empirical variance of x1:N . Furthermore, the
error function approaches −1 for large zmax and 1 for small zmin, such that its contribution in the definite integral
approaches −2. Therefore, the final marginal likelihood is

p (x1:N ) = pz0

(
δt

2πσ2

)N/2√
2πσ2

T
e−

T var(x)

2σ2 . (8)

We can find the same result by writing down Bayes’ rule for p(z|x1:N ) and solving for p(x1:N ), which appears in the
denominator.

2.2. A moving target, γ = 1. Using the previous identity, zn = zN − (N − n)vδt, leads to the likelihood of each xn to
be given by

p (xn|zN , v) = N
(
xn|zN − (N − n)vδt, σ2/δt

)
. (9)

Our aim is to find the joint posterior over zN and v, which is given by the expression

p (zN , v|x1:N ) ∝ N
(
v|0, σ2

0

) N∏
1:n

N
(
xn|zN − (N − n)vδt, σ2/δt

)
∝ e

− 1
2

((
1

σ2
0
+Tδt2−3T2δt+2T3

6σ2

)
v2+ T

σ2 z
2
N−T2−Tδt

σ2 zNv− 2Tx̄
σ2 zN+ 2

σ2 xaccv

)
,

(10)

where we implicitly conditioned on γ = 1, have used the same definition of x̄ as further above, and have defined

xacc = δt2
N∑
n=1

(N − n)xn (11)

To find the posterior moments we first take δt → 0, removing all the δt-dependent terms. To describe the full
posterior, we denote it by

p (zN , v|x1:N ) = N
((

zN
v

)
|
(
µz
µv

)
,

(
Σzz Σzv
Σzv Σvv

))
. (12)

A lengthy, but unspectacular, derivation reveals

Σzz =
4σ2

(
3σ2 + T 3σ2

0

)
T (12σ2 + T 3σ2

0)
, (13)

Σvv =
12σ2σ2

0

12σ2 + T 3σ2
0

, (14)

Σzv =
6Tσ2σ2

0

12σ2 + T 3σ2
0

, (15)

µz =
12σ2x̄+ 4T 3σ2

0 x̄− 6Txaccσ
2
0

12σ2 + T 3σ2
0

, (16)

µv =
6σ2

0

(
T 2x̄− 2xacc

)
12σ2 + T 3σ2

0

. (17)

Interestingly, in the σ0 → ∞ limit, the posterior variance Σzz scales as 1/T , as before. The posterior variance Σvv ,
in contrast, drops more rapidly with 1/T 3. Therefore, temporal integration of evidence provides qualitatively more
velocity than location information. Intuitively, this is because any (xi, xj) pair can be used to infer velocity, whereas
the location estimate relies on the across-xi average.

Understanding what the posterior means needs more work. In particular, let us define

v̂ =
6

T 3

(
T 2x̄− 2xacc

)
=

6

T

(
1

N

N∑
n=1

(
2n

N
− 1

)
xn

)
. (18)

The term in (outer) parenthesis is a weighted sum of the xn’s. In this sum, x1 is weighted by −1, and xN by 1.
Inbetween these extremes, the weights increase linearly from−1 to 1. Therefore, if we group equally-weighted terms
(modulus the sign of the weight), the sum is a weighted combination of location differences, with the highest weight
on xN − x1, less weight on xN−1 − x2, and so on. To see how this can act as a velocity estimate, assume a noise-free
xn = vnδt. Substituting this in the above expression shows that v̂ = v (this is where the 6/T pre-factor comes from).
This justifies denoting it v̂.

2
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Substituting v̂ into the posterior means results in the new expressions

µz =
12σ2x̄+ T 3σ2

0

(
x̄+ v̂T

2

)
12σ2 + T 3σ2

0

= x̄+
T 3σ2

0

12σ2 + T 3σ2
0

T

2
v̂, (19)

µv =
T 3σ2

0

12σ2 + T 3σ2
0

v̂ (20)

This shows that the posterior mean µz start with x̄ for small T , and then shifts toward x̄+ µvT/2, which is the mean
location plus half the estimated distance that the target moved, which is sensible. The posterior mean µv is initially
biased toward zero, due to the prior, and later approaches v̂. Overall, with σ2

0 → 0, the posterior approaches that for
a stationary target, as desired.

To find the marginal likelihood, we solve Bayes’s rule for the posterior for p(x1:N ), which yields

p (x1:N ) =
p (x1:N |zN , v) p (zN ) p (v)

p (zN , v|x1:n)

= pz0

(
δt

2πσ2

)N/2√
2π|Σ|
σ2
0

e−
T(var(x)+x̄2)

2σ2 + 1
2µ

TΣ−1µ,

(21)

where we have chosen zN = v = 0 for the second equality (as the expression holds for any choice of zN and v), and
µ and Σ denote the posterior mean and covariance. The remaining terms evaluate to

µTΣ−1µ =
T x̄2

σ2
+

T 6σ2
0 v̂

2

12σ2 (12σ2 + T 3σ2
0)
, (22)

|Σ| = 12σ4σ2
0

T (12σ2 + T 3σ2
0)
, (23)

such that the marginal likelihood becomes

p (x1:N ) = pz0

(
δt

2πσ2

)N/2√
24πσ4

T (12σ2 + T 3σ2
0)
e

T6v̂2σ2
0

24σ2(12σ2+T3σ2
0)

−T var(x)

2σ2 (24)

As for the posterior, this marginal likelihood approaches that for a stationary target with σ2
0 → 0.

2.3. Is the target stationary or moving? To find the full posterior over the target’s state, we use the causal inference
target velocity prior, p (v) = (1− pγ)δ (v − 0) + pγN

(
v|0, σ2

0

)
, with which the posterior becomes

p (zN , v|x1:N ) = p (zN |x1:N , γ = 0) δ (v − 0) p (γ = 0|x1:N ) + p (zN , v|x1:N , γ = 1) p (γ = 1|x1:N ) . (25)

In this mixture distribution, the first mixture component is that for the stationary target, and the second that for the
moving one. These two components are weighted by the causal modeling posterior p(γ|x1:N ) which indicates the
probability of the target being stationary or moving given the data. This probability can again be found by Bayes’
rule, and results in

p (γ = 1|x1:N ) =
p (x1:N |γ = 1) p(γ = 1)

p (x1:N |γ = 1) p(γ = 1) + p (x1:N |γ = 0) p(γ = 0)

=

√
12σ2

12σ2+T 3σ2
0
e

T6σ2
0 v̂

2

24σ2(12σ2+T3σ2
0) pγ√

12σ2

12σ2+T 3σ2
0
e

T6σ2
0 v̂

2

24σ2(12σ2+T3σ2
0) pγ + 1− pγ

,

(26)

where the last expression results from substituting the marginal likelihoods for the stationary and moving target, and
cancelling all the shared terms. This expression shows that, for a uniform prior, p(γ = 0) = p(γ = 1) = 1/2, the target
is deemed more likely moving for larger velocity estimates v̂. If this estimate is zero, that is, v̂ = 0, then, the more
time has passed, the less likely is the target considered to be moving.

3. ACTING UPON THE INFERRED TARGET LOCATION AND VELOCITY

3.1. Choosing stationary vs. moving. Decision-makers would choose between a stationary and a moving target
according to p (γ|x1:N ). In particular, they would decide that the target is moving if p(γ = 1|x1:N ) > 1/2, that is, if

1

2
log

12σ2

12σ2 + T 3σ2
0

+
T 6σ2

0 v̂
2

24σ2 (12σ2 + T 3σ2
0)
> log

p(γ = 0)

p(γ = 1)
. (27)

3
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3.1.1. Empirical distribution of stationary reports. As experimenters we cannot directly observe v̂, such that we need to
estimate it. Furthermore, it will fluctuate across trials, even if the same evidence is presented, making the decisions
more noisy.

To build a model for v̂ we note that v̂ is a weighted sum of xn’s, and rely on our generative assumptions of xn for
a stationary and a moving target. For a stationary target, we have xn ∼ N

(
z, σ2/δt

)
. In this case, 〈v̂|γ = 0〉 = 0, and

its variance is given by

var (v̂|γ = 0) =

(
6

TN

)2 N∑
n=1

(
2n

N
− 1

)2
σ2

δt
=

12σ2

T 3
. (28)

This variance decreases rapidly with time, as more and more xn’s are used to estimate v̂. This results in the required
moments 〈

v̂2|γ = 0
〉

=
12σ2

T 3
, var

(
v̂2|γ = 0

)
=
〈
v̂4|γ = 0

〉
−
〈
v̂2|γ = 0

〉2
=

288σ4

T 6
. (29)

If we denote the v̂2-related term in the above decision criterion, Eq. (27), by α, this α has moments

〈α|γ = 0〉 =
T 3σ2

0

2 (12σ2 + T 3σ2
0)
,

√
var (α|γ = 0) =

T 3σ2
0√

2 (12σ2 + T 3σ2
0)
, (30)

leading to the signal-to-noise ratio 〈α|γ = 0〉 /
√

var(α|γ = 0) = 1/
√

2. More relevant, under the assumption that α is
Gaussian whose parameters are fully determined by mean and variance, the probability that the decision criterion is
met becomes

p (choose γ = 1|γ = 0) = Φ

(
1√
2

+

√
2
(
12σ2 + T 3σ2

0

)
T 3σ2

0

(
log

p(γ = 1)

p(γ = 0)
+

1

2
log

12σ2

12σ2 + T 3σ2
0

))
(31)

For T → 0 or σ2
0 → 0 this probability is dominated by the prior and lead to a choice of γ = 1 if p(γ = 1) > p(γ = 0).

It shrinks with increasing T , as more evidence results in higher certainty that the target is not moving. Increasing
the observation noise σ2 has two counteracting effects. First, it increases the pre-factor to the inner-most brackets,
thus boosting the prior. Second it results in a weaker drop of the last term in brackets with time, indicating that more
evidence will be required to discard the possibility that the target is moving.

For a moving target, xn ∼ N
(
zN − (N − n)vδt, σ2/δt

)
. This yields v̂ to be Gaussian, with moments

p (v̂|v) = N
(
v̂|v, 12σ2

T 3

)
, (32)

which only differs in the non-zero mean from the v̂ for the stationary case. With the above, the moments of v̂ are
given by 〈

v̂2|γ = 1
〉

=
12σ2

T 3

(
1 + ṽ2

)
, var

(
v̂2|γ = 1

)
=

288σ4

T 6

(
1 + 2ṽ2

)
, (33)

where we have defined the time-rescaled velocity ṽ2 = T 3v2/(12σ2). The previously defined α then has moments

〈α|γ = 1〉 =
T 3σ2

0

(
1 + ṽ2

)
2 (12σ2 + T 3σ2

0)
,

√
var (α|γ = 1) =

T 3σ2
0

√
1 + 2ṽ2√

2 (12σ2 + T 3σ2
0)
, (34)

leading to the signal-to-noise ratio
(
1 + ṽ2

)
/
√

2 + 4ṽ2 which approaches the linear function |ṽ|/2 for larger ṽ2. Plug-
ging these moments into the decision criteria and assuming Gaussianity leads to the choice probability

p (choose γ = 1|γ = 1) = Φ

(
1 + ṽ2√
2 + 4ṽ2

+

√
2
(
12σ2 + T 3σ2

0

)
T 3σ2

0

√
1 + 2ṽ2

(
log

p(γ = 1)

p(γ = 0)
+

1

2
log

12σ2

12σ2 + T 3σ2
0

))
. (35)

For ṽ2 → 0, this probability becomes equivalent to the one for γ = 0. The larger ṽ2, the stronger the influence of the
first term, and the weaker the influence of the remaining terms. In particular, the larger ṽ2, the higher the probability
of choosing γ = 1.

A non-approximate approach to computing p (choose γ = 1|γ = 1) is to re-write the decision criterion for p (γ = 1|x1:N ) >
1/2 as

|v̂| > β ≡ σ

T 3σ0

√
24 (12σ2 + T 3σ2

0)

(
log

p(γ = 0)

p(γ = 1)
− 1

2
log

12σ2

12σ2 + T 3σ2
0

)
. (36)

This criterion is only valid if the term in square-roots is non-negative, which is guaranteed as long as

p(γ = 0)

p(γ = 1)
>

√
12σ2

12σ2 + T 3σ2
0

. (37)

This is always satisfied if p(γ = 0) > p(γ = 1). In general, it requires little evidence about the target’s motion (i.e.,
small T and σ2

0 and large σ2), and a relatively strong prior toward the target not moving. If the above condition is
4



Causal inference within close action-perception loops Supplementary Information

violated, the decision criterion becomes |v̂| ≥ 0, which is always satisfied. That is, under these circumstances, the
target will always be considered moving.

Assuming there is a non-zero chance of the target being stationary, then the probability of the decision-maker
reporting a stationary target depends on the perceived v̂ which is Gaussian in the true v (see above). Then, as β ≥ 0,
|v̂| > β is satisfied if either v̂ > β or−v̂ > β. As these two options are mutually exclusive, their joint probability sums
and is given by

p(choose γ = 1|v) = Φ

(
v − β√
12σ2/T 3

)
+ Φ

(
−v − β√
12σ2/T 3

)
. (38)

Simulations confirmed that these expressions match simulated choices.

4. STAGE II: INTERCEPTING THE TARGET

We assume agents travel at constant velocity, such that we only need to determine travel direction and stopping
time for the best target interception. The objective is to minimize the expected cost, 〈c (za(t), zo(t))〉, where za is the
agent’s location, zo is the target’s location, and the expectation is over the uncertainty involving both. We will assume
a simple cost function c (za, zo) = −δ (za − zo), which is minimized if za = zo.

The task itself is two-dimensional: the target appears at a certain distance and can move only laterally. We will
assume that the depth is known and denoted zo,d (o for object, and d for depth). The agent moves at a constant
velocity va at angle θ (θ = 0 is straight-ahead) for some time t. Then, what needs to be determined for optimal
interception is the agent’s stopping time t∗ and the angle θ∗ that minimizes the expected cost,

t∗, θ∗ = argmin
t,θ

〈c (za(t, θ), zo(t))〉 = argmax
t,θ

p (za(t, θ) = zo(t)) , (39)

where the second equality follows from the delta cost-function.

4.1. Agent motion model. We will use the self-motion estimation model from Lakshminarasimhan et al. (2018),
where they assume a Weber-like variance scaling of the self-location estimate,

za(t, θ) =

(
za,l
za,d

)
(t, θ) ∼ N

((
vat sin θ
vat cos θ

)
,

(
k2 (vat sin θ)

2λ
0

0 k2 (vat cos θ)
2λ

))
, (40)

with parameters k (k2 is the variance scaling factor) and λ (determines the sub/supra-linearity of the variance scal-
ing), and where we have assumed za(0, θ) = (0, 0)

T .

4.2. Target motion model. As the target depth is known, we only need to estimate its initial lateral location and
eventual velocity. To do so, we use the target location/velocity estimates derived further above, which provide the
joint estimate

p (zo,l(0), vo,l|X) = p (zo,l(0)|X, γ = 0) p (γ = 0|X) + p (zo,l(0), vo,l|X, γ = 1) p (γ = 1|X) , (41)

where X ≡ x1:N are all target observations up to the target offset, zo,l(0) is the inferred lateral position at target
offset (measured relative to agent), vo,l is the target’s lateral velocity, and γ ∈ {0, 1} denotes the target being station-
ary/moving. To compute the posterior over zo,l(t) for γ = 1, we use zo,l(t) = zo,l(0) + vo,l to get, as before,

µoz,l(t) = 〈zo,l(t)|X, γ = 1〉 = µz + µvt =
12σ2x̄+ T 3σ2

0

(
x̄+

(
T
2 + t

)
v̂
)

12σ2 + T 3σ2
0

, (42)

σ2
oz,l(t) = var (zo,l(t)|X, γ = 1) = Σzz + t2Σvv + 2tΣzv =

4σ2
(
3σ2 + σ2

0

(
T 3 + 3T 2t+ 3Tt2

))
T (12σ2 + T 3σ2

0)
, (43)

where µz , µv , and the Σ’s are the posterior moments of p(zo,l(0), vo,l|X, γ = 1), Eq. (12). Overall, this leads to the
posterior to be given by

p (zo(t)|X) = δ (zo,d(t)− zo,d)
(
N
(
zo,l(t)|x̄,

σ2

T

)
p (γ = 0|X) +N

(
zo,l(t)|µoz,l(t), σ2

oz,l(t)
)
p (γ = 1|X)

)
. (44)

4.3. Optimal steering angle and stopping time. To find the optimal steering angle θ∗ and stopping time t∗, we use
the independence of the components of za(t) and zo(t) to find

za,l(t)− zo,l(t)|X ∼ N
(
vat sin θ − x̄, k2 (vat sin θ)

2λ
+
σ2

T

)
p (γ = 0|X) (45)

+N
(
vat sin θ − µoz,l(t), k2 (vat sin θ)

2λ
+ σ2

oz,l(t)
)
p (γ = 1|X) ,

za,d(t)− zo,l(t)|X ∼ N
(
vat cos θ − zo,d, k2 (vat cos θ)

2λ
)

(46)

5
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The optimal θ∗ and t∗ maximize the probability of both differences being zero. This leads to the expression

t∗, θ∗ = argmax
t,θ

N
(

0|vat cos θ − zo,d, k2 (vat cos θ)
2λ
)
×

(
N
(

0|vat sin θ − x̄, k2 (vat sin θ)
2λ

+
σ2

T

)
p (γ = 0|X)

+N
(

0|vat sin θ − µoz,l(t), k2 (vat sin θ)
2λ

+ σ2
oz,l(t)

)
p (γ = 1|X)

)
. (47)

This optimization is complex and doesn’t have an analytical solution. Therefore, we need to use numerical optimiza-
tion to find θ∗ and t∗.

For good initial guesses for this optimization, we consider the moving and stationary target case in isolation. For
a stationary target, the Gaussian peaks at vat sin θ = x̄ and vat cos θ = zo,d, which leads to parameters

θ∗γ=0 = tan−1 x̄

zo,d
, t∗γ=0 =

√
x̄2 + z2o,d

va
. (48)

For a moving target, the Gaussian peaks at vat sin θ = µoz,l(t) = µz + µvt and vat cos θ = zo,d, resulting in

θ∗γ=1 = tan−1
µz + µvt

∗
γ=1

zo,d
, t∗γ=1 =

µvµz ±
√
v2az

2
o,d + v2aµ

2
z − µ2

vz
2
o,d

v2a − µ2
v

, (49)

where we provide two solutions to t∗γ=1 which result from solving a quadratic equation, and where µz and µv are
the posterior moments of p (zo,l(0), vo,l|X, γ = 1). To identify a unique t∗γ=1 we assume that v2a > µ2

z , such that the
agent is guaranteed to be able to catch up with the target. Furthermore, we require t∗γ=1 > 0 which is guaranteed

to be violated if µ2
zµ

2
v < v2az

2
o,d + v2aµ

2
z − µ2

vz
2
o,d, or, equally,

(
z2o,d/µ

2
z + 1

) (
v2a − µ2

z

)
> 0. The latter holds if both

v2a − µ2
z > 0 (guaranteed by assumption) and z2o,d/µ

2
z + 1 > 0, or z2o,d > −µ2

z . As the right-hand side of the latter is
always negative, the last inequality is always true, confirming that the only solution to t∗γ=1 is the one with a sum
(rather than difference) in the numerator. Substituting the expressions of µz and µv in terms of x̄ and v̂ does not lead
to any appreciable simplifications.

Together, these two solutions allow us to approximate the optimal heading directions and stopping times by

θ∗ ≈ θ∗γ=0p (γ = 0|X) + θ∗γ=1p (γ = 1|X) , (50)

t∗ ≈ t∗γ=0p (γ = 0|X) + t∗γ=1p (γ = 1|X) . (51)

We use these approximations to initiate a gradient-descent procedure to find the correct t∗ and θ∗.

4.4. Experimentally observable optimal stopping, and perceived velocity estimate. As for the stationarity reports,
the experimenter does not observe x̄ and v̂ and needs to marginalize over them. They are distributed as

x̄|v, zN N
(
zN −

vT

2
,
σ2

T

)
, v̂|v ∼ N

(
v,

12σ2

T 3

)
. (52)

We estimate the associated statistics of θ∗ and t∗, by a Monte Carlo approximation. That is, we draw multiple x̄ and
v̂, compute the associated θ∗ and t∗, and use those to compute the posterior distributions over θ∗ and t∗.

To assess the decision maker’s estimate of the target’s velocity, we will infer the assumed velocity from the deci-
sion maker’s stopping location. The actual stopping location could feature a mismatch between the decision maker’s
depth and that of the target. By our initial assumption that the decision maker knows the target’s depth, this mis-
match arises from the decision maker’s actual location while actively steering, and thus doesn’t refect the decision
maker’s estimate. Thus, instead of using the agent’s final location as a measure for the assumed velocity, we will
instead use the point zo,d tan θ∗ and time t̂ = zo,d/(va cos θ∗) at which the agent crossed the target’s path (i.e. reaches
depth z0,d).

Therefore, we won’t take the depth mismatch into account, and instead only focus on lateral location, using

zo,l(0) + v̂ot̂ ≈ vat̂ sin θ∗, (53)

where the left-hand side is the target’s location at time t̂ (assuming velocity v̂o), and the right-hand side is the decision
maker’s location at the same time. Re-expressing the above in terms of v̂o results in

v̂o ≈ va
(

sin θ∗ − zo,l(0)

zo,d
cos θ∗

)
. (54)
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Supplementary Results 
 
We examine the possibility that results in the main text are not driven by participants attributing object-motion to 
self-motion during concurrent object and self-motion, but that during the latter condition participants are uncertain 
and thus follow a prior determined by the relative number of targets perceived as stationary or moving. Namely, 
we test if during self-motion participants are more likely to report targets as stationary because they are more 
numerous. 
 
In pilot testing (n = 7, no overlap with participants in the main text) we employed a larger range of velocities (up 
to 60 cm/s, as opposed to 40cm/s in the main text). Further, this data was collected on semi-naïve subjects, did 
not include eye-tracking, had observation times of 300ms (vs. maximum of 150ms in the main text).  As it can 
be appreciated below (Figure S1, red = self-motion), even though in this particular dataset most targets were 
reported as moving, still during concurrent self- and object-motion (red), participants reported targets as 
stationary over a larger range than when not under concurrent self- and object-motion. This confirms the results 
from the main text in (1) a different group of participants, and (2) a setup in which most targets are subjectively 
perceived as moving.    
 
 

 
Figure S1. Pilot experiment with larger firefly velocities sampled and longer observation times (300ms). As in the main 
text, proportion of target reported as stationary is plotted. Red = self-motion, black = no self-motion. Please note the 
x-axis is in m/s here. 
 
Second, and more directly, we explicitly tested during piloting (n = 4, subset from the 7 participants in Figure 
S1) whether subjects were sensitive to the fraction of trials in which target velocities were zero. The data below 
(Figure S2) is plotted as a function of speed (absolute velocity), regardless of whether targets moved to the left 
or right. On different blocks, 55% (red), 65% (green) or 75% (blue) of trials were non-zero speeds. As it can be 
appreciated, in all cases participants reported targets as stationary over a larger range under concurrent self- 
and object-motion (bottom panel, labeled “move”) than during object-motion only (top panel, labeled “no move”). 
More importantly, the fraction of non-zero target velocities did not play an appreciable effect within the time-
frame of these experiments.  
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Figure S2. Pilot experiments in which we directly tested the impact of the sampling of zero and non-zero 
velocities. Red, green, and blue respectively correspond to cases in which 55%, 65%, or 75% of trials were non-
zero speeds. No effect is appreciable. Target velocities (x-axis) are in m/s.  
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