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SUMMARY
During periods of rest, hippocampal place cells feature bursts of activity called sharp-wave ripples (SWRs).
Heuristic approaches have revealed that a small fraction of SWRs appear to ‘‘simulate’’ trajectories through
the environment, called awake hippocampal replay. However, the functional role of a majority of these SWRs
remains unclear. We find, using Bayesian model comparison of state-space models to characterize the
spatiotemporal dynamics embedded in SWRs, that almost all SWRs of foraging rodents simulate such tra-
jectories. Furthermore, these trajectories feature momentum, or inertia in their velocities, that mirrors the an-
imals’ natural movement, in contrast to replay events during sleep, which lack such momentum. Last, we
show that past analyses of replayed trajectories for navigational planning were biased by the heuristic
SWR sub-selection. Our findings thus identify the dominant function of awake SWRs as simulating trajec-
tories with momentum and provide a principled foundation for future work on their computational function.
INTRODUCTION

Planning through mental simulations, or the anticipation of

future action-outcome sequences, is a powerful mechanism

for improving action selection (Sutton and Barto, 1998). Strik-

ingly, rodents performing spatial navigation tasks appear to

perform such mental simulations (Buzsáki, 2015; Carr et al.,

2011). While the animal is moving, hippocampal place cells

exhibit spatially localized firing patterns, such that a population

of place cells represents the animal’s current location in the

environment (O’Keefe and Dostrovsky, 1971; Figures 1A and

1B). During a fraction of sharp-wave ripples (SWRs), which are

population bursts of activity associated with brief pauses in

the animal’s movement, these place cells appear to shift to

generating ‘‘simulated’’ trajectories through the environment

(Davidson et al., 2009; Diba and Buzsáki, 2007; Tingley and

Peyrache, 2020; Figures 1A–1C). These ‘‘awake hippocampal

replay events’’ have been proposed to support a range of

computational functions, such as memory storage (Wilson and

McNaughton, 1994), recall (Gillespie et al., 2021; Shin et al.,

2019; Xu et al., 2019), and planning (Jadhav et al., 2012; Pfeiffer

and Foster, 2013; Singer et al., 2013). However, determining the

precise computational function of these events has been chal-

lenging (Joo and Frank, 2018; Mattar and Daw, 2018), and it re-

mains unclear why they constitute only a small fraction of SWRs

(Tingley and Peyrache, 2020). A critical foundation for assessing

the computational role of SWRs is a comprehensive and sys-

tematic characterization of the spatiotemporal dynamics of

the trajectories they encode and how these dynamics relate to

natural movement in the environment.
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Two main challenges have hampered a systematic character-

ization of the spatiotemporal dynamics of replay events. First,

most studies of hippocampal replay are performed in one-

dimensional (1D) maze environments, which greatly constrains

the possible set of observed dynamics to linear trajectories.

This obscures subtle task-specific details in the trajectories’ dy-

namics and makes it hard to identify certain features in the un-

derlying trajectories, such as their relation to natural movement

(Stella et al., 2019). Second, established methods for identifying

replay trajectories within SWRs use heuristics whose implicit as-

sumptions cause them to identify only a subset of especially

salient trajectories (Tingley and Peyrache, 2020). Commonly,

they declare SWRs as replay events only if the position sequence

decoded by maximum likelihood satisfies a restrictive set of

criteria. For example, trajectories might need to be linear trajec-

tories in 1D environments (Davidson et al., 2009; Diba and Buz-

sáki, 2007) or haveminimum start-to-end andmaximumconsec-

utive position distances in two-dimensional (2D) environments

(Pfeiffer and Foster, 2013, 2015). Particularly in 2D environments,

which more closely resemble the rodents’ natural habitat, this

leads to discarding more than two-thirds of SWRs as non-trajec-

tory events (Pfeiffer and Foster, 2015; Stella et al., 2019). Does

this imply that the discarded SWRs in fact do not encode trajec-

tories but instead signal other events, or that these SWRs just do

not conform to the assumed classification criteria? Furthermore,

if the discarded SWRs indeed encode trajectories, to what de-

gree is their characterization and subsequent analysis biased

by discarding them?

To address these questions, we move away from traditional

heuristics of replay event classification and instead take a
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B Figure 1. State-space models for charac-

terizing the spatiotemporal structure of

SWRs

(A) Rats foraged in a 2m3 2mopen-field arena for

food hidden in wells (shaded gray circles). The

blue trace illustrates a schematic behavioral tra-

jectory of the rat.

(B) Representative sample from data recording.

Top trace shows the velocity of the animal, with an

initial period in which it is moving (blue shading),

followed by a period in which it is not moving (gray

shading). The raster plot shows associated spiking

activity for each cell, i, over time t. SWRs occur

within the period in which the rat is not moving

(orange shading, example SWR).

(C) Schematic of assumed relationship between

the putative simulated trajectory, z1:T, encoded by

the example SWR (left panel; zx/zy denote en-

coded x/y positions) and the recorded spikes, x1:T
(right panel, SWR from B expanded in time; color

gradient from yellow to purple indicates time). The

spike generation model (middle panel) uses the

place fields (four example cells; top-right number

is maximum firing rate [spikes/s]) estimated from

spiking data during movement to predict spike

counts for each spatial position during SWRs.

(D) Considered dynamics models for character-

izing the spatiotemporal structure encoded by an

SWR. Dynamics models are grouped into trajec-

tory models, which assume a continuously

evolving trajectory, and non-trajectory models,

which do not. We show for each dynamics model,

M, a schematic depicting the assumed dynamics

(top row), three example simulated trajectories

generated from the dynamics of the model (middle

row), and the underlying graphical model showing

the statistical relationship of the variables involved

(bottom row; see STAR Methods for detailed

description).
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probabilistic modeling approach. This approach rests on

defining explicit, dynamical models for trajectories as contin-

uous sequences of position and compares them with alternative

models of non-continuous position sequences. Applied to neural

tetrode recordings of rats foraging in an open-field area (Pfeiffer

and Foster, 2013), our approach revealed that almost all of the

observed SWRs encode spatial trajectories. Furthermore, these

trajectories appeared to feature movement dynamics with mo-

mentum, that is, with inertia on their velocities. Thus, they feature

dynamics beyond simple Brownian motion and comparable with

how rodents actually move through the environment. This has

several consequences. First, the finding that almost all SWRs

encode trajectories reveals that simulating spatial trajectories

is, in fact, a dominant function of SWRs. Second, the finding of

momentum embedded in these trajectories implies that the

mechanism generating these events needs to include a notion

of velocity, suggesting the potential inclusion of multiple brain

networks (see Discussion). Third, finding consistent momentum

stands in contrast to similar replay events during sleep, which

appear to lack such momentum and instead follow simpler

Brownian motion (Stella et al., 2019). Thus, awake and sleep

replay events might differ in both their engaged neural mecha-
nisms and their functional role. Fourth, almost all SWRs encod-

ing trajectories implies that previous work analyzing these trajec-

tories might have been biased by discarding the majority of

them, as we demonstrate in the context of navigational planning

further below. Last, our approach is generally less sensitive to

noise than the established heuristics and thus should lead to

cleaner, less biased, decoded trajectories that can inform further

work on their role in navigational planning.

Although previous work has applied probabilistic methods to

the analysis of replay events, it has done so in a different context.

Location decoding from place cell population activity at isolated

time points, for example, commonly relies on maximum likeli-

hood approaches (Johnson and Redish, 2007; Zhang et al.,

1998). Other past studies have applied probabilistic methods

to identifying replay events but did not model the spatial dy-

namics of the trajectories (Linderman et al., 2016; Maboudi

et al., 2018). Recent work (Denovellis et al., 2021) used a related

probabilistic formulation of the position sequence encoded

within an SWR but restricted itself to W-maze environments

and did not distinguish between diffusion and momentum dy-

namics. We instead perform a systematic characterization of

the spatial dynamics of replay trajectories in unconstrained 2D
Neuron 110, 722–733, February 16, 2022 723
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environments and use a rich class of considered dynamics

models for such environments that yields insights into the dy-

namics underlying SWRs.

RESULTS

State-space models characterize the spatiotemporal
structure of SWRs
We analyzed the spatiotemporal structure of SWRs in the data-

set of Pfeiffer and Foster (2013, 2015), which consists of tetrode

recordings from hippocampal CA1 collected while rats foraged

around a 2 m 3 2 m open-field environment for a hidden food

reward (Figures 1A and 1B). The rats’ ability to freely roam an

open field, unconstrained by the topology of a maze, was essen-

tial to our main objective of characterizing the replay events’

spatiotemporal structure. Each session consists of 80–263 sin-

gle units from recording sessions of 37–66 min (n = 8 sessions,

four rats for 2 sessions each). For our analysis we used the

2,956 SWRs (Figure 1B) that Pfeiffer and Foster (2015) identified

by their ripple-band power of the local field potential (mean ±

SD = 372 ± 42 SWRs per session; see STAR Methods).

We used Bayesian model comparison applied to state-space

models to distinguish between different spatiotemporal dy-

namics encoded by each SWR. Our state-spacemodels assume

that the place cell activity sequence underlying each SWR en-

codes a sequence of positions (i.e., the latent state sequence)

in the open-field environment and allow us to distinguish

different dynamics of these position sequences from recorded

spike data (Figure 1C). Their two components are (1) a spiking

model that determines, for each latent position in the environ-

ment, the resulting place cell activity encoding this position

and (2) a dynamics model, describing the presumed dynamical

structure of each sequence of latent positions. We represent

the latent position zt at each time point t by discretizing the envi-

ronment into a 50 3 50 grid (43 4 cm bins). We do not have ac-

cess to the underlying true sequence of positions over time,

z1:T = z1,., zT (assuming here a sequence of length T), but

instead observe the sequence of recorded spikes, x1:T = x1,.,

xT, where xt denotes the vector of spike counts emitted by

each place cell in the tth time bin. As in previous work (Davidson

et al., 2009; Pfeiffer and Foster, 2015), we assume that place cell

activity encodes latent position during SWRs as they do during

periods of active movement. Thus, we estimated each cell i’s

place field fi(z) from its spiking activity during movement and in

turn assumed that the observed spikes during SWRs were, for

some latent position z, generated by draws from a Poisson dis-

tribution, independent across cells, with spike rate fi(z) for place

cell i (see STAR Methods).

We then define a set of candidate dynamics models that

describe the hypothesized spatiotemporal structure of how the

latent position, zt, evolves through time and space (Figure 1D).

Each dynamics model M is fully described by the probability

p(z1:T|M) that it assigns to a specific position sequence z1:T.

The models differ in the probability they assign to a sequence,

with the highest probability assigned to position sequences

that are most compatible with the model’s assumed dynamics.

To capture a reasonable range of potential spatiotemporal dy-

namics of position sequences, we defined five models that
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each make different assumptions about these dynamics (Fig-

ure 1D). This is equivalent to defining a set of hidden Markov

models with different priors on the transition function (Figure 1D,

bottom row). The first model describes a random walk through

space: a one-step Markov model in which the position at any

time point depends only on the previous position. Its dynamics

generate trajectories that resemble Brownian motion through

the environment, so we refer to this model as the ‘‘diffusion’’

model. Notably, its trajectories lack momentum and so, unlike

natural movement, do not follow smooth movement through

space (Figure 1D, middle row). This is rectified by our diffusion

with ‘‘momentum’’ model, whose sequence of velocities, v1:T =

v1,.,vT (i.e., consecutive position changes), rather than posi-

tions, performs a continuous random walk. The position se-

quences associated with both models form continuously

evolving trajectories, such that we refer to them collectively as

‘‘trajectory’’ models.

To distinguish SWRs that encode trajectories from those that

do not, we defined three additional models that do not hypothe-

size temporal continuity of the encoded position sequences. The

first, ‘‘stationary’’ model assumes that the latent position re-

mains constant over time within a single SWR. The second, sta-

tionary ‘‘Gaussian’’ model relaxes this rather stringent assump-

tion by allowing the latent position to be drawn at each point in

time from a Gaussian with mean and variance that remain fixed

within individual SWRs but can vary across them. Last, the third,

‘‘random’’ model assumes that the latent positions are drawn

independently across time within each SWR and uniformly on

the discretized environment. As none of these alternativemodels

assumed the position encoded by SWRs to evolve along a

continuous trajectory, we refer to them collectively as ‘‘non-tra-

jectory’’ models.

We applied model comparison separately to each SWR (Fig-

ure 2). That is, we did not assume all SWRs to encode the

same latent state dynamics but instead asked, for each SWR

in the dataset separately, how likely each model was to have

generated the recorded sequence of spikes. To apply the model

comparison, we chose to bin observed spikes into non-overlap-

ping time bins of 3 ms but found comparable results for other

choices of the time bin size (Figure S1A). Combining the spike

generation model with the different dynamics models, and aver-

aging over all possible latent position sequences, allowed us to

compute the likelihood p(x1:T|M) of observing the given spike

sequence for each dynamics model (see STAR Methods).

Assuming each dynamics model is a priori equally likely, and

applying Bayes’ rule to this likelihood, in turn provides a posterior

distribution, p(M|x1:T), of how likely each of the dynamics models

is for this particular SWR (see STAR Methods). This posterior

both tells us which model described the spiking data best—the

model with the highest likelihood p(x1:T|M)—and also gives us

a measure of relative certainty across the dynamics models (Fig-

ure 2B). Importantly, this procedure implicitly penalized more

complex dynamics models (MacKay, 1995). For example, the

latent position sequence arising from a stationary model would

also be compatible with a stationary Gaussianmodel with a small

variance. However, the higher complexity of the latter makes our

model comparison prefer the former, if compatible with the

observed spike sequence. This applies to all dynamics models
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Figure 2. State-space models reveal the spatiotemporal dynamics within individual SWRs

The examples shown were chosen to illustrate different types of latent dynamics, most of which remained unclassified by the traditional method for analyzing

replay events.

(A) Heatmaps visualize the decoded position under each dynamics model by p(zt|x1:T,M), summed over all time, t = 1.T, for visualization. They illustrate how our

approach combines the uncertain position information encoded by place cells with the stochastic position dynamics assumed by the different models. Each

column shows the decoded position under one dynamics model, and each row is a representative SWR.

(B) The relative likelihood of each model to generate the recorded spikes within the SWRs shown in (A).

(C) Comparison with the traditional method for replay classification (Pfeiffer and Foster, 2015): the heatmap visualizes decoded posterior position and extracted

trajectory using the traditional method for trajectory classification for each SWR. The green line indicates the extracted trajectory that is subjected to classification

criteria, and the label under the heatmap indicates if the SWR was classified as a trajectory.
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that can mimic other dynamics models in certain parameter re-

gimes (see STAR Methods and Figures S7D and S7E for such

model relationships): if two models explain the spike sequence

equally well, our approach generally prefers the more con-

strained, less complex dynamics model.

Most awake SWRs feature trajectories with momentum
Applying our model comparison to all SWRs across all sessions

confirmed that almost all (91.7%; see Figure S2) SWRs that were

classified as trajectories by Pfeiffer and Foster (2015) using the

previous, heuristic approach (which we refer to as the ‘‘tradi-

tional method’’ in the following) were best described by one of

our trajectory models. For example, the traditional method clas-

sified SWR15 in Figure 2 as a replay event andwas best fit by our

momentummodel. However, we also foundmany previously un-

classified SWRs to be best described by one of our trajectory

models. For example, SWRs 23 and 73 in Figure 2 are best

described by the momentum and diffusion models, respectively,

though they failed the previous classification criteria because of

a too small start-to-end distance of the extracted trajectory.
Indeed, the traditional method only classified 23.7% of the

2,956 SWRs as trajectories, which we will refer to as ‘‘previously

classified’’ trajectories (see STAR Methods). Furthermore, few

SWRs were best described by one of the non-trajectory models,

as, for example, the stationary model for SWR 131.

We next asked how likely each dynamics model was on

average to have generated individual SWRs within each ses-

sion. We inferred this distribution over dynamics model by

random-effects model comparison (Penny et al., 2010). In

contrast to the more standard fixed-effects Bayesian model

comparison that assumes all SWRs to follow the same dy-

namics model and infers the most likely one, random-effects

model comparison assumes SWRs to be drawn from a distribu-

tion over dynamics models, making it less prone to outliers in

per-SWR model likelihoods p(x1:T|M) (Stephan et al., 2009; Fig-

ure S1B). Across sessions, random-effects analysis (Figure 3A)

revealed that 84.9% ± 2.9% (mean ± SD across sessions) of

SWRs are generated by dynamics containing momentum

(exceedance probability of momentum model z 1 for all ses-

sions; the exceedance probability is the probability that the
Neuron 110, 722–733, February 16, 2022 725
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Figure 3. The vast majority of SWRs feature trajectories with momentum

(A) Inferred distribution of dynamics models underlying the observed SWRs (mean ± SD across sessions), computed using random-effects model comparison

(see main text).

(B) Comparison of our method with the traditional method, grouping the diffusion and momentum dynamics models into trajectory models and the remaining

models into non-trajectory models (mean ± SD across sessions; gray dots, individual sessions).

(C) Confusion matrix summarizing model recovery results on simulated data. Each row shows the inferred distribution of dynamics models, p(M | all simulated

SWRs Xsim), given the set of simulated spiking data generated under a different dynamics model M.

(D) Cumulative histogram of deviance explained for all SWRs by the best-fitting model (pink line) and the random model (gray line). Zero percent deviance ex-

plained: predicting same average spike firing rate across all neurons/SWRs; 100% deviance explained: predicting correct spike count in each time bin.

See also Figures S1 and S2.
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momentum model is more likely than all other models), sug-

gesting that these SWRs include a notion of velocity in the dy-

namics underlying the position evolution. Additionally, 4.8% ±

0.9% of SWRs are generated by diffusion dynamics without

momentum. The remaining 10.3% ± 2.0% are consistent with

non-trajectory dynamics (stationary, 4.5% ± 0.7%; stationary

Gaussian, 3.0% ± 0.7%; random, 2.8% ± 0.8%). Overall, this

implies that 89.7% ± 2.0% of SWR were identified to encode

trajectories and thus contain temporal structure (Figure 3B).

This stands in stark contrast to the 22.8% ± 8.4% of SWRs

that are classified as replay events by the traditional method

(Figure 3B). We found similar results when applying the model

comparison to high-synchrony events (HSEs; STAR Methods)

rather than SWRs (Figures S1D–S1G), confirming that these re-

sults are not specific to the method used to identify neural pop-

ulation events of interest.

To ensure that our method did not erroneously identify tem-

poral structure where there was none, we performed two addi-

tional checks. First, we applied the same model comparison to

data in which we either separately randomly shuffled the

neuron identities for each SWR or randomly shifted each neu-

ron’s place field. Both perturbations cause the momentum

model to cease dominating the model comparison (Figures

S1H and S1I). Second, we generated simulated spiking data

under the dynamics of each of our five models and checked

how reliably our method could recover the model that we

used to generate the data. To match the statistics of true

data, we used parameters similar to those recovered from

data and generated spikes using the estimated place fields

(see STAR Methods). We then asked how often the simulated

place cell activity is identified to be generated by the model

of the true underlying dynamics rather than any of the other

models (Figure 3C). This revealed a reliable discrimination be-

tween trajectory and non-trajectory models (F score = 0.94),
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thus making the spurious detection of temporal structure un-

likely. Within trajectory models, the second check also illus-

trates the implicit model complexity penalization of Bayesian

model comparison: even though the momentum model can in

some parameter regimes capture diffusion dynamics (see

STAR Methods; Figure S7E), almost all simulated diffusion dy-

namics trajectories are attributed to the simpler diffusion model

rather than the more complex momentum model (Figure 3C,

top row). Furthermore, SWRs following momentum dynamics

are more likely misclassified as diffusion (25.5%) than the

reverse (6.0%). Thus, some of the SWRs we have identified

as diffusion without momentum in our data might in fact feature

momentum. Overall, this might have led to underestimating the

fraction of SWRs featuring momentum dynamics.

Last, we asked howmuch of the variance in spiking activity our

best-fitting model was able to capture. We found the best-fitting

model for each SWR to explain a substantial fraction of this vari-

ance (deviance explained mean ± SD across all SWRs = 0.234 ±

0.070; Figure 3D), significantly more than the random model

(mean ± SD = 0.099 ± 0.050 greater than random model; paired

t test, t[2,883] = 339.9, two-sided p < 13 10�6). Considering that

100% of deviance explained would require perfect knowledge of

place cell tuning and encoded trajectory, rather than estimating

them from noisy data, the observed fraction of variance is well

within the expected range and in line with the literature (Driscoll

et al., 2017; Minderer et al., 2019). Furthermore, perturbing the

data by shuffling neuron identities or randomly shifting the place

fields caused the deviance explained to drop below that of the

random model (Figure S1J). Thus, the identified latent dynamics

structured the observed activity in a meaningful way. Taken

together, our findings reveal that almost all SWRs contain dy-

namics with continuous spatial structure and consequently

should be included in the analysis and interpretation of the

computational role of replay events.
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B Figure 4. Place cell activity during behavior

is also best described by momentum dy-

namics

(A) Run snippets selected for model comparison

analysis for an example session. The gray trace

indicates the animal’s behavior throughout the

entire example session. Each colored trace

represents a selected run snippet (see STAR

Methods; Figure S3).

(B) Inferred distribution of dynamics models un-

derlying the generation of neural data during

behavioral run snippets (teal; exceedance proba-

bility of momentum/diffusion models = 0.85 ±

0.26/0.15 ± 0.26; mean ± SD across all sessions).

The same distribution is shown for SWRs (pink;

same as Figure 3A) for comparison.

(C) Examples of individual run snippets. Heatmaps

as in Figure 2A, with true trajectory overlaid (light

blue line).

(D) The relative likelihood of each model to

generate the recorded spikes within the example

run snippets shown in a.

See also Figure S3.
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Neural activity during SWRs resembles neural activity
during behavior
If replay events are indeed involved in processing past, or plan-

ning for future, behavior, we speculate the position dynamics

they encode to mimic those of real behavior. To test this, we

compared the dynamics inferred from these replay events to dy-

namics inferred from place cell data of moving animals. We did

so by applying our analysis to randomly selected snippets of

place cell activity during periods of movement (Figure 4A). For

a fair comparison with replay events, we matched the distribu-

tion of distances traversed in these run snippets to the distribu-

tion of distances traversed within individual SWRs (see STAR

Methods; Figure S3).

Applying our random-effects model comparison to place

cell activity during movement yields a similar distribution

across dynamics models as for SWRs (Figure 4B): most snip-

pets appeared to feature momentum dynamics, some diffu-

sion dynamics, and few non-trajectory dynamics (mean ±

SD: diffusion, 33.2% ± 8.3%; momentum, 55.5% ± 9.6%; sta-

tionary, 3.0% ± 0.8%; stationary Gaussian, 5.7% ± 1.8%;

random, 2.7% ± 0.7%; example run snippets in Figures 4C

and 4D). The larger time bin size underlying the run snippet

analysis made trajectories with momentum appear more

similar to diffusion, resulting in an additional boost to diffusion

dynamics compared with SWRs. Nonetheless, the overall

qualitative match to the dynamics model distribution recov-
Ne
ered from SWRs, in particular for trajec-

tory versus non-trajectory models, indi-

cates that the statistical structure of

spiking activity during SWRs is similar

to that during real movement. Given

that the rats’ actual movement is known

to feature momentum (Stella et al.,

2019), it might appear surprising that

the place cell activity associated with
any of the run snippets appeared to feature non-momentum

dynamics. However, it only confirms what we have already

shown in simulations (Figure 3C): the ambiguity inherent in

limited and noisy spiking data causes our model comparison

to mistake trajectories with momentum as only featuring diffu-

sion and rarely even as non-trajectories. Thus, it is also bound

to underestimate the proportion of SWRs with momentum dy-

namics, in particular for short SWRs with few spikes (Fig-

ure S1C). As a consequence, we expect an even larger major-

ity of SWRs than estimated to contain spatial trajectories with

momentum.

Despite the good match in recovered model distributions

across SWRs and run snippets, we observed quantitative differ-

ences in the underlying neural activity. SWRs are associated with

bursts in population activity and thus feature more spikes per

second across neurons than in similar time periods while the an-

imal is moving (Nádasdy et al., 1999; Figure S3). Even after

lengthening movement snippets to match the SWRs spike

counts, the trajectories decoded fromSWRs traverse further dis-

tances than those decoded during movement (Figure S3). For

the aforementioned model comparison, we further increased

the movement snippet durations to achieve matching trajectory

distance distributions. Overall, SWRs encoded trajectories with

more spikes within the same time period and traversed larger

distances with the same number of spikes compared with place

cell activity during movement.
uron 110, 722–733, February 16, 2022 727
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Figure 5. Trajectories decoded from awake SWRs and behavior are not consistent with Brownian motion

(A) Example most likely trajectories (purple line) decoded from SWRs (see STAR Methods), overlaid on a heatmap of the decoded positions under the diffusion

dynamics model, summed over time (see Figure 2A for details).

(B) Example most likely trajectories (solid teal line) decoded from neural activity of run snippets, overlaid on a heatmap of the decoded positions under the

diffusion dynamics model. The decoded trajectory lines up well with the animal’s behavior trajectory (light blue dotted line).

(C) Log-log plot of time window index and mean distance from starting point for trajectories decoded from SWRs (purple) and behavior (teal) (mean ± SD across

session). The average slope (a) of a linear regression fit to each session is provided in the figure legend. The linear fit’s slope significantly exceeded 0.5 for SWRs

and run snippets for all sessions but not for simulated diffusion (inset; SD error bars obscured by dots).

See also Figure S4.
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Decoded trajectories confirm spatiotemporal
momentum dynamics
Recently, Stella et al. (2019) found that the reactivated trajec-

tories in hippocampal replay during sleep followed Brownian

diffusion dynamics, akin to our diffusion dynamicsmodel without

momentum. Specifically, they identified these dynamics by a po-

wer-law relationship between time elapsed and distance trav-

eled with an exponent of 0.5 (Rudnick and Gaspari, 2004).

Applying the same analysis to place cell activity during move-

ment, they again found a power law relationship, but this time

with an exponent greater than 0.5, inconsistent with Brownian

diffusion. Hence, replay events during sleep do not seem to

follow dynamics resembling natural movement. This stands in

contrast to our finding that awake replay follows dynamics with

momentum which resemble natural movement and predict ex-

ponents >0.5 (see Supplemental information), pointing to a po-

tential difference in the mechanism generating awake and sleep

replay.

To ensure that this discrepancy did not arise from the differ-

ence in applied methodology, we replicated our analysis using

the method of Stella et al. (2019). First, for each SWRwe inferred

the most likely trajectory by the Viterbi algorithm. This approach

takes temporal continuity of latent positions into account and is

thusmore robust to decoding noise than the traditional approach

of concatenating the most likely position across individual time

bins (Figures 5A and 5B; STAR Methods). To avoid confounding

our analysis with non-trajectory SWRs, we considered only

SWRs that are best described by one of the trajectory models

(2,366 SWRs, 82.1% of the total dataset; Figure S1B). Further-

more, we applied the Viterbi algorithm to trajectories inferred us-

ing diffusion rather than momentum dynamics, to avoid biasing

the inference toward momentum dynamics. Separately, we
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applied the same approach to infer trajectories from the neural

data during movement, using the same run snippets we used

for our model comparison analysis further above. The most likely

position sequence aligned well with the marginal position esti-

mates for SWRs (Figure 5A) and with both the rat’s behavioral

trajectory and the marginal position estimates for run snippets

(Figure 5B; see Figure S4 for run snippet decoding accuracy).

Plotting the distance traveled within individual, inferred trajec-

tories over elapsed time (Figure 5C), we observed a power-law

relationship between these quantities with an exponent signifi-

cantly exceeding 0.5 for all sessions for both the trajectories de-

coded from run snippets as well as from SWRs (bootstrap, both

one-sided p < 1 3 10�6; Figure 5C, inset). This above-0.5 expo-

nent suggests trajectory dynamics with momentum, in line with

our previous model comparison. For verification, the same coef-

ficient computed from simulated trajectories with diffusion dy-

namics resulted in an exponent that was not significantly larger

than 0.5 (bootstrap, one-sided p = 0.71). This confirms that, in

contrast to replay events during sleep, awake replay events

appear to encode trajectory dynamics with momentum, which

hints at different mechanisms underlying replay events during

sleep and wakefulness.

Sub-selecting SWRs by heuristics biases the analysis of
encoded trajectories
Finally, we asked if sub-selecting SWRs according to the tradi-

tional classification criterion for replay events introduced biases

in analyzing how replayed trajectories perform computations

supporting navigational planning. In the analyzed dataset, the

animals alternated between two trial types: (1) foraging for a

food reward hidden in one of the 36 food wells at random (the

‘‘goal’’ well) and (2) returning to collect a food reward in a known
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Figure 6. Decoded trajectories of home events tend to be shorter and slower than of away events

(A–D) Histogram (top row) and cumulative fraction (bottom row) of replay trajectory descriptive statistics split by home and away events depicting (A) the duration,

(B) the total distance, (C) the start-to-end distance, and (D) the velocity, defined as total distance divided by duration.

See also Figure S5.
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‘‘home’’ well that was consistent across trials within a session

(see Figure 1A for well placements). This task structure allowed

us to compare replay trajectories between these two types of

goal-directed actions: returning to the ‘‘home’’ well, whose loca-

tion is known, and finding the ‘‘goal’’ well, whose location is not.

Following Pfeiffer and Foster (2013), we group SWRs into ‘‘home

events’’ and ‘‘away events’’ on the basis of the current location of

the animal, corresponding to being either at the home well or

elsewhere in the environment, respectively. Although Pfeiffer

and Foster (2013) used HSEs (STAR Methods) to identify events

of interest, they switched to the use of SWRs in Pfeiffer and Fos-

ter (2015). For consistency, we also used SWRs, but in contrast

to Pfeiffer and Foster (2015), who focused on the 23.7%of SWRs

classified as replay events by the traditional method, we

analyzed all 82.1% of SWRs that were best fit by one of our tra-

jectory models. Furthermore, as described above, we used the

Viterbi algorithm applied to the diffusion dynamics model rather

than traditional decoding approaches to decode the most likely

trajectories from SWRs.

First, we compared decoded trajectories between these two

trial types using a set of simple descriptive statistics, namely,

the duration, the total distance traveled, the start-to-end dis-

tance, and the average velocity of each of the trajectories (Fig-

ure 6). These trajectory statistics varied considerably across

trajectories, with many trajectories having shorter distances

than the minimum distance used in common SWR classification

criteria. Furthermore, replay trajectories at the home location

had a significantly shorter duration (independent t test:

t[2,366] = 7.2, two-sided, Bonferroni-corrected p < 13 10�6), to-

tal distance (independent t test: t[2,366] = 6.4, two-sided, Bon-

ferroni-corrected p < 13 10�6), and start-to-end distance (inde-

pendent t test: t[2,366] = 7.3, two-sided, Bonferroni-corrected

p < 1 3 10�6) than replay trajectories elsewhere in the environ-

ment and were also slightly, but significantly, slower (indepen-
dent t test: t[2,366] = 2.9, two-sided, Bonferroni-corrected p =

0.013). These differences increased for a more restrictive defini-

tion of ‘‘away events’’ that considered only replay events while

the animal was at the goal location (Figure S5A), even after con-

trolling for the difference in trajectory durations (Figure S5B).

However, they vanished for all but duration once we only consid-

ered the subset of trajectories extracted with the traditional

method for trajectory classification (as used by Pfeiffer and Fos-

ter (2015); Figure S5C) and thus have eluded discovery so far.

More generally, irrespective of trial type, previously classified

trajectories were longer in duration, distance traveled, and

start-to-end distance and faster than the trajectories analyzed

here (Figure S2B). Last, the differences between trial types

were not present in the rodents’ movement (independent t test,

two-sided, Bonferroni-corrected p values: duration, t[2,122] =

2.59, p = 0.029; total distance, t[2,122] = 2.27, p = 0.070; start-

to-end distance, t[2,122] = 0.38, p = 1.00; velocity, t[2,122] =

0.14, p = 1.00), suggesting that they do not derive from the ro-

dents’ behavior.

Second, we revisited the main finding of Pfeiffer and Foster

(2013) that replay events are predictive of the future path taken

by the animal. Specifically, they found that replayed trajectories

were somewhat predictive of future but not past paths for ‘‘home

events,’’ that is, when the animal was at the home well. They

were predictive of both future and past paths for ‘‘away events,’’

that is, when the animal was elsewhere in the area, but more

strongly so for future paths.We replicated these effects for future

paths when considering only the subset of SWRs classified as

replay events in Pfeiffer and Foster (2015), while decoding trajec-

tories using our probabilistic model (Figure 7B, green lines).

Once we included all SWRs deemed as encoding trajectories,

the effects remained for ‘‘away events’’ but vanished for

‘‘home events’’ (Figure 7B, purple lines), and similar results

were observed for the more restrictive definition of ‘‘away
Neuron 110, 722–733, February 16, 2022 729



A

B

Figure 7. Away events are more biased to the future path than home

events

(A) Alignment between replayed trajectories and the animal’s path was

quantified as the angular distance between the decoded replay trajectory and

the future (left) or past path (right) at a series of concentric circles expanding

outward from the current location of the animal (Pfeiffer and Foster, 2013; see

STAR Methods). Using a criterion that depends on distance but not velocity

supports comparing replay and behavioral trajectories that evolve at different

speeds.

(B) The plots show histograms of angular alignments, computed as described

in (A). A peak at zero indicates that the replayed trajectories are predictive of

the animal’s taken path. The different plots show these alignments for ‘‘away

events’’ (top) and ‘‘home events’’ (bottom), and for future (left) and past (right)

paths, when including only previously classified SWRs (green; mean ± SD

within each alignment bin) or all the SWRs we classified as encoding trajec-

tories (purple; mean ± SD within each alignment bin). The dashed gray lines

indicate alignment from shuffled events (see STAR Methods).

See also Figure S6.
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events’’ (Figure S6). We did not identify any predictivity for

past paths.

Although a detailed computational account of these findings is

beyond the scope of our work, these results suggest that, pre-

ceding directed movement, SWRs simulate longer trajectories

that more closely resemble the full future path of the animal. In

contrast, preceding random foraging, they simulate shorter

possible paths that do not necessarily predict immediate future

behavior.

DISCUSSION

Applying a probabilistic method to classify SWRs, we found that

a large majority of SWRs during exploration of a 2D environment
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contain temporally continuous spatial information. Furthermore,

the encoded trajectories evolve under dynamics with mo-

mentum, similar to real movement through the environment.

We showed this by using Bayesian model comparison to infer

which of a set of five state-space models, each making different

explicit assumptions about the encoded position dynamics, is

able to explain each SWR’s spike pattern. Our result stands in

contrast to previous, heuristic approaches, which identified

only the most salient trajectories but left the role of the remain-

ing SWRs unresolved (Foster and Wilson, 2006; Karlsson and

Frank, 2009; Pfeiffer and Foster, 2015; Tingley and Peyrache,

2020). Observing that the replayed trajectories featured mo-

mentum further contrasts with previous work showing that tra-

jectories replayed during sleep followed Brownian motion

without momentum (Stella et al., 2019). Thus, awake replay

might result from different underlying mechanisms and feature

a different purpose. As discarding the majority of SWRs might

have led to biases in follow-up analyses, we replicated the an-

alyses of Pfeiffer and Foster (2013) on the full set of SWRs

and identified small, but significant, differences, as well as pre-

viously underappreciated heterogeneity of the embedded tra-

jectories. More generally, our method promises a less biased

analysis of hippocampal replay that we expect to aid future

research on identifying the computational role of replay in plan-

ning and learning.

Although our model comparison classifies a small fraction of

SWRsasnon-trajectories, even thesemight correspond to replay

events. Theymight, for example, constitute replay of close to sta-

tionary trajectories (Denovellis et al., 2021; Yu et al., 2017), which

are in turn best captured by our stationary (non-trajectory)model.

Furthermore, some SWRs might replay trajectories in a different

environment, like the rodent’s home cage (Karlsson and Frank,

2009). This implies adifferentmappingbetweenplacecell activity

and encoded location, inwhich case the trajectory should appear

random to themodel (Leutgeb et al., 2004). The lowprevalence of

SWRs being classified as random suggests that such replays are

rare or non-existent in the analyzed data.

Observing that the trajectories underlying awake replay

feature momentum leads to questions about the mechanisms

that generate them. During movement, encoded trajectories

are expected to feature momentum, as they mirror the animal’s

natural movement (Figures 4B and 5C). Absent such movement,

the origin of momentum is less clear. Momentum could arise in at

least twoways, both involving some notion of the animal’s veloc-

ity. Representing the immediately preceding location in addition

to the current one would allow the next location to depend on

both, such that the distance between current and next location

to relate to that between preceding and current one, effectively

implementing momentum. This is, in fact, how we implemented

the momentum model in our model comparison approach (see

STARMethods; Supplemental information). Alternatively, awake

replays could engage consistent activity in areas representing

the animal’s velocity (Kropff et al., 2015) and heading direction

(Taube, 2007), similar to when the animal is moving through

the environment. These alternatives lead to different predictions

about neural activity during replay events that can be distin-

guished experimentally. Furthermore, it would distinguish them

from replay events during sleep, during which momentum is
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not observed, andmight elucidate how these two types of replay

events differ in terms of function.

Although our trajectory decoding approach did not explicitly

decode velocities, it is worth considering how a consistent veloc-

ity representation during replayed trajectories might aid position

decoding by downstream brain regions. For example, it could

augment uncertain decoding of the currently replayed position

by predicting this position from past position estimates and de-

coded velocities. In fact, the same principle has been used for

decoding position during behavior (Zhang et al., 1998). The ner-

vous system, in contrast, might not benefit from adding velocity

to its readout for follow-on computations, as it has access to all

position-encoding neurons. This might yield highly precise posi-

tion information that added velocity information might not

improve upon.

Decoding replayed trajectories with our model revealed sub-

tle, task-specific details in the trajectories’ dynamics whose

highly heterogeneous structure might have been underappreci-

ated by past heuristic-driven analyses. In particular, we found

replay events preceding random foraging to be shorter and

slower than events preceding directed movement, a detail that

is missed when only considering the subset of SWRs that meet

the heuristic classification criteria. Additionally, we can interpret

our trajectories in light of a recent theory by Mattar and Daw

(2018), which suggests that replay trajectories reflect previous

experience replayed to improve action selection, prioritized to

balance propagating new information about reward with

focusing on the most imminent locations in the environment.

Thus, for the analyzed dataset, replay trajectories driven by

consideration of imminent choices should predict future paths

for ‘‘away events,’’ when the future goal location is known, but

not for ‘‘home events,’’ when the future location is unknown.

Although in conflict with previous analysis of Pfeiffer and Foster

(2013) that focused on the most salient replayed trajectories, we

confirm these predictions once we include all events we identi-

fied as trajectories (Figure 7B). However, we would furthermore

expect replay trajectories at the home well to predict past paths,

driven by propagation of reward, which we do not see. Although

we consider an interpretation of these details beyond the scope

of our work, they are examples of the kinds of characteristics of

replay events that would be useful to consider in further studies

assessing the computational role of replay, but that might be

missed without a systematic and unbiased characterization of

their spatiotemporal structure.

Treating the identification of latent position dynamics as a

probabilistic inference problem has several benefits. First, it al-

lows use of the full posterior estimate of the position across

time rather than relying on point estimates of the most likely po-

sition, which, because of noisy neural data, will be noisy and thus

unreliable. Second, the models capture uncertainty in the en-

coded spatial pattern, which in turn is reflected in the relative cer-

tainty between possible underlying dynamics per SWR. Last, it

provides a consistent and unbiased approach to focusing on

the aspects of the dynamics of interest, by formulating a targeted

set of models that differ in their explicit assumptions about the

underlying dynamics, like diffusion with or without momentum.

Our approach relied on spike-sorted place field data, which

might discard a significant number of spike-like voltage traces,
whose inclusion might boost our model comparison’s power.

Recent work side-stepped spike sorting and decoded place

cell data from raw voltage traces instead (Deng et al., 2015;

Kloosterman et al., 2014), thereby improving decoding perfor-

mance (Kay et al., 2020). Given the large number of recorded

neurons in our data, and the already fairly conclusive model

comparison results, we do not expect this alternative approach

to significantly improve our analysis. However, it might benefit

similar analyses applied to recordings from smaller populations,

as was the case in aforementioned work.

Oneof the limitations of our approach, shared toour knowledge

byallwork that decodes location fromplacecell activity, is thatwe

assume neural activity of these cells for each location to be statis-

tically independent of each other. Noise correlationsmodulate in-

formation and for the considered population sizes could either

boost or decrease it (Averbeck and Costa, 2017; Kohn et al.,

2016). Although data sparsity makes it impossible to precisely

quantify such correlations, we do not expect that taking them

into account would qualitatively change our results. Additionally,

we have assumed the place cell activity’s rate during SWRs to

scale up by a constant factor, shared by all neurons, compared

with activity during movement (Figure S3A). Allowing this factor

to vary across SWRs and neurons, which effectively leads to

over-dispersed SWR spike counts as suggested by Chandrase-

karan et al. (2018), neither improved our model fits nor changed

the outcome of our model comparison (Figures S1K–S1M). Relat-

edly, our model comparison approach is restricted to the five dy-

namics models we have considered, and trajectories that match

neither dynamics model would erroneously be attributed to one

of them.Given the high flexibilitywithwhichwe formulated the dy-

namicsmodels, we do not expect this to have confounded our re-

sults. Nonetheless, an interesting avenue for future work could be

to model the latent location sequence as a hierarchical Gaussian

process, as in Wu et al. (2017), in which case structural assump-

tions are flexibly captured by the covariance matrix governing

location evolution. This would allow even greater flexibility in

defining possible transition structures of interest. More generally,

Bayesianmodel comparison can be sensitive to slight modelmis-

specification (Chandrasekaran et al., 2018), which we hope to

have avoided by our exploration of different variants of both place

cell activity likelihoods and model dynamics. Last, we have

focused on identifying the macrodynamics of replay trajectories,

which does not capture previously identified fine-scale dynamics

within replay events in which the position ‘‘jumps’’ between suc-

cessive positions (Pfeiffer and Foster, 2015).

Our work identifies the dominant function of SWRs as simu-

lating trajectories and lays a principled foundation for future

work examining the computational role of the replayed trajec-

tories. Our finding that their spatiotemporal dynamics feature

momentum informs the possible computational roles they could

play. Specifically, this argues against awake replay events being

generated by local Markovian dynamics based on location only

and instead suggests that they emerge from network dynamics

that incorporate a notion of velocity. Overall, the use of state-

space models provides a principled method for analyzing the

spatiotemporal structure contained within sharp-wave ripples

that future work on their computational function and underlying

mechanisms can build upon.
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Data and code availability
d The paper analyzes data from Pfeiffer and Foster (2013, 2015). Please contact Brad Pfeiffer and David Foster to obtain the

analyzed datasets.

d The code used to analyze the data and generate the figures has been deposited at Zenodo and is publicly available as of the

date of publication. The DOI is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal model
The dataset used in this study has been described in detail previously in Pfeiffer and Foster (2013, 2015). All procedures were

approved by the Johns Hopkins University Animal Care and Use Committee and followed US National Institutes of Health animal

use guidelines. A total of four wild-type male Long Evans rats (10-20 weeks old, 450-550 g) were used for this study. Animals

were housed in a standard, non-inverted, 12-hour light cycle, handled daily, and food-restricted to 85%–90% of their free-feeding

weight. Behavioral training and recording were performed in the afternoon to early evening.

METHOD DETAILS

Data acquisition and behavior
As described in Pfeiffer and Foster (2013, 2015), animals were trained on a foraging task in a 2 m x 2 m open field environment, in

which the animal foraged for food hidden in one of 36 wells, spaced evenly in a 6 well x 6 well grid. Neural recordings were obtained

via a microdrive array containing 40 gold-plated tetrodes implanted in CA1 of dorsal hippocampus. Data was obtained from each rat

for two days (a total of 8 sessions across rats). Individual units were identified by Pfeiffer and Foster (2015) bymanual clustering based

on the spike waveform peak amplitudes obtained from custom software (xclust2, Matt A. Wilson), and inhibitory units were excluded

on the basis of spike width and mean firing rate.

The animal’s position was determined by two distinctly colored, head-mounted LEDs, recorded at 60Hz by an overhead video sys-

tem, and down-sampled to 30Hz before analysis. The animal’s speed was calculated as the distance between successive recorded
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positions over the recording resolution rate, and the data was split in to ‘‘moving’’ and ‘‘not moving’’ periods by a threshold of 5 cm/s

on the running speed.

During data collection, animals engaged in a foraging task that consisted of two alternating trial types: searching for food in a well

that was in a different location across trials (the ‘‘goal’’ well), or awell that was consistent location across trials (‘‘home’’ well). The goal

well was in a random location on each trial, excluding the home well and the goal well from the previous trial. The home well was in a

consistent location within each session, but changed across sessions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Estimating place fields
Place fields were fit using spiking data from periods in which the rat was considered moving (see above). The animal’s position, z =

½zx;zy�, was binned into a 50 3 50 grid (4 cm x 4 cm bins), leading to 2,500 unique positions within the arena. For each cell, i, the

corresponding place field fiðzÞ was defined as the maximum a-posteriori estimate assuming Poisson spiking, PoisðxtjfiðztÞÞ, and a

Gamma prior on the firing rate, GamðfiðztÞja;bÞ, such that for each cell i and spatial bin, zt = k,

fiðzt = kÞ = 1

b+Tk;rundt

 XTk;run
t =1

xi;k;t + a� 1

!
(Equation 1)

where Tk;run is the total number of time bins spent in spatial bin k, xi;k;t is the spike count x emitted by cell i in spatial bin k at time bin t,

and dt is the time bin size (recording resolution of 30 Hz, such that, here dt = 1=30). Aweak prior was usedwith parameter settings a=

1:01 and b = 0:01, such that the maximum a-priori firing rate is ða�1Þ=b= 1 spikes/s. After estimation, place fields fiðztÞ were

smoothed with a Gaussian kernel (4 cm standard deviation). A cell was considered a place cell if the peak of its tuning curve,

max
z

fiðzÞ, exceeded 2 spikes/second. Only cells identified as place cells were used in further analysis.

SWR and HSE detection
For our study, we used the set of SWRs identified in Pfeiffer and Foster (2015) based on features of the local field potential (LFP). As

described previously, a representative electrode was chosen for each tetrode, the LFP for that tetrode was band-pass filtered be-

tween 150 and 250 Hz, and the absolute value Hilbert transform of the filtered signal was smoothed with a Gaussian kernel (12.5

ms standard deviation). The average of this signal across all tetrodes was then used to identify SWRs as a local peak with an ampli-

tude greater than 3 standard deviations above the mean, with start and end boundaries as the point when the signal crossed the

mean. Only SWRs longer than 50 ms and shorter than 2 s that occurred when the rat was considered ‘‘not moving’’ were included

for further analysis.

In addition to SWRs, we also conducted our trajectory identification analysis on periods of high neuronal synchrony, termed high-

synchrony events (HSEs), which are commonly used in studies of hippocampal replay (Davidson et al., 2009; Pfeiffer and Foster,

2013; Xu et al., 2019). Following Pfeiffer and Foster (2013), a histogram of total spikes per non-overlapping 1ms time bins was calcu-

lated and smoothed using a Gaussian kernel (20 ms standard deviation). HSEs were identified as peaks in the smoothed histogram

greater than 3 standard deviations above the mean, with the starting point and end point of each HSE defined as the time point in

which the smoothed histogram crossed themean. Only time periods in which the animal was considered ‘‘not moving’’ were included

for further analysis.

Extracting population bursts from SWRs
To ensure low firing-rate periods flanking the population activity burst of interest within an SWR did not impact our analysis, we sub-

selected a time period of each SWR in which the average firing rate across all neurons was above 2 spikes/s per neuron. Specifically,

for each SWR, the spiking activity was binned using a 3ms time bin (unless stated otherwise, Figure S1A), and the ‘‘population burst’’

was defined as the period of time from the first upward-crossing to the last downward-crossing of the firing rate threshold within the

SWR (Figure S7A). Population bursts shorter than 30 ms were excluded from the analysis (73 SWRs, or 2.5% of the 2956 total SWRs

were excluded). This resulted in population bursts that were shorter than the original SWRs, but had roughly the same number of

spikes (Figures S7B and S7C). Throughout all further analyses we only analyzed neural data within the extracted population burst,

but referred to the extracted population bursts as SWRs, for simplicity.

Description of state-space models used to characterize SWRs
All five state-space models that we use to distinguish between the spatio-temporal dynamics of the SWRs consist of two compo-

nents: (i) a spike generation model, which is common across all models, and (ii) a dynamics model, which differed across models.

The spike generationmodel, pðx1:T jz1:TÞ, describes how the latent position at each discretized time bin, z1:T = z1;.; zT for a sequence

of length T, is assumed to generate spike trains, x1:T = x1;.;xT . Here, zt denotes the latent grid position at time t, and xt is a vector of

spike counts across cells for the tth time bin of size dt (dt = 3ms unless stated otherwise, see Figure S1). The dynamics model,

pðz1:T jMÞ differs across models, M, and describes the probability of observing a specific position sequence z1:T for each of these

models. Together, they result in the joint probability across spikes and latent positions for state-space model M to be given by
Neuron 110, 722–733.e1–e8, February 16, 2022 e2
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pðx1:T ; z1:T jMÞ = pðx1:T jz1:TÞpðz1:T jMÞ: (Equation 2)

Here, and inmuch of the below, the dynamicsmodel is implicitly also conditional on themodel-specific parameters, qM. Wemake this

explicit whenever required for clarity.

Poisson spike generation model
In this and the next section, we consider two spike generation models. As we show in Figure S1L, the first explains the data better,

such that we focus on this model in the main text. For both models, we assume the spike generation probabilities (that is, the HMM

emission probabilities) pðx1:T jz1:T Þ to factor across time, that is pðx1:T jz1:TÞ =
QT

t = 1 pðxtjztÞ. The first model assumes that, within each

time bin, spikes are drawn from a Poisson distribution, independent across cells, with rates determined by the place fields fit during

movement (see Estimating place cells), that is

pðxtjztÞ =
YN
i = 1

Poisðxt;i
��fiðztÞgspikedtÞ; (Equation 3)

where xt;i is the spike count of cell i in time bin index t, dt is the time bin size, and gspike is the spike count scaling factor (described

below). This is equivalent to assuming that the spike sequence of each cell is drawn according to a time-discretized inhomogeneous

Poisson process with instantaneous spike rate fiðztÞgspike that varies across positions zt, and thus time.

We accounted for the increase in firing rate within SWRs as compared to movement by calculating a spike count scaling factor,

gspike (as described in Figure S3A). Average firing rate was calculated for each unit as the total number of spikes emitted over the

total duration within periods that the rat was either considered ‘‘moving,’’ ~f i;movement, or within population bursts, ~f i;popburst for each

cell i. A linear regression was performed over the set of ð~f i;movement; ~f i;popburstÞ pairs per session, and the average slope, or average

population activity scaling, across all sessions, gspike = 2:9, was used as the spike count scaling factor.

Over-dispersed spike generation model
The spike count scaling factor’s value, gspike, is uncertain, as it is estimated from noisy data. Our second spike generation model

makes this uncertainty explicit, by modeling gspike are a random variable. Specifically, we assume that, within each session, gspike

follows a Gamma distribution gspike � Gamðal;blÞ. The distribution’s parameters, al and bl, are, separately for each session, esti-

mated by maximum likelihood from ~f i;popburst=~f i;movement measures across all neurons i recorded in this session. Furthermore, for

each SWR, we assume each neuron’s spike scaling factor, gi;spike for neuron i to be drawn independently from this distribution.

With these assumptions, the spike count likelihood becomes

pðxtjztÞ =
YN
i = 1

Z
Poisðxt;i

��fiðztÞgi;spikedtÞGamðgi;spike

��al;blÞdgi;spike =
YN
i = 1

NB

�
xt;i

����al;
fiðztÞdt

fiðztÞdt + bl

�
: (Equation 4)

Thus, the likelihood becomes a product of negative binomial distributions. For neuron i, the associated negative binomial distribution

has mean Cxt;i
��ztD = fiðztÞdtCgi;spikeD, just like the above Poisson spike generation model. However, in contrast to that first model, it

features a larger variance, varðxt;ijztÞ = fiðztÞdt + bl
bl

Cxt;i
��ztD (note theR1 pre-factor). Thus, taking into account our uncertainty in gspike re-

sults in an over-dispersed spike generation model

This secondmodel is more complex than the first, such that Bayesian model comparison only prefers it if this additional complexity

is warranted to explain the observed data. As shown in Figure S1L, our data does not support this additional complexity, such that we

only focus on the first, Poisson spike generation model, in the main text.

Dynamics models
Different dynamics models, M, are characterized by how the latent position evolves over time,

pðz1:T jMÞ = pðz1jMÞ
YT
t = 2

pðztjz1:t�1;MÞ: (Equation 5)

We define five dynamics models:1) diffusion - position evolves as a randomwalk, 2) diffusion withmomentum - velocity evolves as

a randomwalk with decay (that is, an Ornstein-Uhlenbeck process), 3) stationary - position remains constant, 4) stationaryGaussian -

position is at each time point drawn from a Gaussian with constant moments, 5) random - position is at each time point drawn from a

uniform distribution. Each of thesemodels correspond to a first order HiddenMarkovModel, except for themomentummodel, which

corresponds to a second order Hidden Markov Model (Figure 1D, bottom row). In continuous time, the dynamics of latent position zj
in the diffusion and momentum models is described by
e3 Neuron 110, 722–733.e1–e8, February 16, 2022
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Diffusion:
dzj
dt

= sdhj;dðtÞ; (Equation 6)
Momentum:
dzj
dt

= vjðtÞ; dvj
dt

= � lmvjðtÞ+ smhj;mðtÞ; (Equation 7)

where the processes are independent across spatial dimension j˛fx;yg, and h$;$ðtÞ are Gaussian white noise processes. Here, sd is

the diffusion coefficient of the diffusion model, and lm and sm are the decay and diffusion coefficient, respectively, of the momentum

model. As both models describe continuous spatial trajectories, we refer to them collectively as trajectory models.

We implement these models in discrete time, where they are given by

Diffusion: p
�
ztjzt�1Þ = N

�
ztjzt�1; s

2
ddtI

�
; (Equation 8)
Momentum: pðztjzt�1; zt�2Þ = N

�
ztj
�
1 + e�lmdt

�
zt�1 � e�lmdtzt�2;

s2
mdt

2

2lm

�
1� e�2lmdt

�
I

�
; (Equation 9)
p
�
z2jz1Þ = N

�
z2jz1;s2

m0dtI
�
; (Equation 10)

In the above, all normal distributions Nð $Þ are bivariate normal distributions over both spatial dimensions with diagonal covariance

matrices, and discretized and appropriately normalized over the spatial grid. The detailed derivation for the momentummodel is pro-

vided in Supplemental information. It results in a second-order Markov model, where the first step, pðz2jz1Þ is modeled separately as

a diffusion with variance s2m0dt, which effectively implements a prior over the initial velocity, vjð0Þ. The diffusion model describes tra-

jectories with a diffusion coefficient of a= 0:5 (see below and main text). Over the short time-scales of SWRs, the momentum model

describes super-diffusive trajectories with a>0:5 (see Supplemental information for derivation).

The non-trajectory models are only specified in discrete time, and are given by

Stationary: pðztjz1:t�1Þ = pðztÞ= dzt ;zs ; (Equation 11)
Gaussian: pðztjz1:t�1Þ = pðztÞ = N
�
ztjm;s2

gI
�
; (Equation 12)
Random: pðztjz1:t�1Þ = pðztÞ=UðztÞ; (Equation 13)

for all t = 1;.;T, and where dzt ;zs is the Kronecker delta function that is one if zt = zs, and zero otherwise. The normal distribution

Nðzt
��m;s2gIÞ is, as before, a bivariate normal distribution over both spatial dimensions with a diagonal covariance matrix, and

UðztÞ= 1=K is the uniform distribution across all K = 2;500 spatial bins. The non-trajectory models are specified by parameters zs
for the stationary location, and m and s2g for the Gaussian mean and variance, respectively.

The model parameters sd, sm, lm, sg, m, and zs were fit over a grid and marginalized out for model comparison (see below section

for details). sm0 in the momentummodel, which is the standard deviation of the diffusion process on the first time step, pðz2jz1Þ, was

set a single pre-determined value of 10 m/s, representing a wide prior on the initial velocity of the trajectory. For all models a uniform

prior was used for the initial position, pðz1jMÞ = Uðz1Þ = 1=K, where K = 2; 500 is the number of spatial bins.

Relationship between dynamics models
Both trajectory and non-trajectory model pairs generate very similar dynamics predictions in certain parameter limits that we discuss

here. If two dynamics models generate similar predictions, Bayesian model comparison will prefer the simpler of the two (MacKay,

1995), which is usually the one with the lower number of parameters.

For trajectory models, the momentummodel predicts similar dynamics as the diffusion model once lm becomes large. This can be

seen when inspecting Equation 9, where e�lmdt/0 with lm/N. In this case, its mean becomes zt�1, and its variance s2mdt
2I=ð2lmÞ,

matching the structure of the diffusionmodel’s dynamics, Equation 8. These relationships are illustrated in Figure S7E. If bothmodels

predict the latent position dynamics equally well, Bayesian model comparison will prefer the less complex diffusion model.

For non-trajectory models, the Gaussian model, Equation 12, can mimic the dynamics of both the stationary and the random

model, Equations 11 and 13, in different parameter limits. In the limit of s2g/0, it approaches the stationary model with m = zs. In

the limit of s2g/N, it approaches the random model, and m becomes irrelevant. These relationships are illustrated in Figure S7D.

If the Gaussian and stationary model, or the Gaussian and random model fit the data equally well, Bayesian model comparison

will prefer the less complex stationary or random model, respectively.
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Marginalizing over latent position sequences and model parameters
For each SWR,we calculated the likelihood of observing the recorded sequence of spikes under each dynamicsmodel, marginalizing

over the sequence of latent positions,

pðx1:T jM; qMÞ =
X
z1:T

pðx1:T ; z1:T jM; qMÞ=
X
z1:T

pðx1jz1Þpðz1jM; qMÞ
YT
t = 2

pðxtjztÞpðztjz1:t�1;M; qMÞ; (Equation 14)

where qM are the parameters of model M. This provides a relative comparison of how likely each model is to have generated the

spiking data per SWR, for a fixed set of model parameters qM. For both the diffusion and momentum models, we used the forward

pass of the forward-backward algorithm to calculate the data likelihood (Bishop, 2006) while exploiting their dynamics model struc-

ture to keep the computational complexity manageable. Detailed expressions for each model and their associated time and space

complexities are provided in the Supplemental information.

To comparemodels with different numbers of parameters, qM, we calculated the data likelihood pðx1:T jM; qMÞ over a parameter grid

and marginalized over these parameters,

pðx1:T jMÞ =
X
qM

pðx1:T jM; qMÞpðqMjMÞ: (Equation 15)

For m and zs we used a uniform grid across all spatial locations. For the remaining parameters, sd, sm, lm, and sg, we determined the

prior in two steps. First, we evaluated the data likelihood, pðx1:T jM; qMÞ over a uniform grid in log-space: 30 bins from 10 to 630 cm
Os for

sd, 30 bins 1 to 200 cm for sg, 30 bins from 40 to 400 m
s3=2

for sm, and the vector [1, 25, 50, 75, 100, 200, 300, 400, 500, 800] 1s for lm for

SWRs; 30 bins from 1 to 100 cm
Os for sd, 30 bins 1 to 200 cm for sg, 25 bins from 1 to 250 m

s3=2
for sm, and the vector [1, 10, 20, 40, 80, 120,

200, 400, 800, 1200, 2000, 4000] 1s for lm for run snippets. We chose these grids to ensure that most mass of the parameter likelihood

pðx1:T jM; qMÞ lies within this grid. Second, we found for each session and relevant model M the maximum likelihood parameter fits

over the parameter grid, bqM;ML = argmaxqMpðx1:T jM; qMÞ, for each SWR, and used the distribution of bqM;ML ‘s across SWRs to fit an

appropriate prior, pðqMjMÞ. Specifically, for the standard deviation parameters in the diffusion and Gaussian models, sg and sd, we

used an inverse Gamma distribution as the prior. For the Gaussian model, the mean mwas marginalized out before performing these

fits. For the standard deviation and decay parameter in the momentummodel, sm and lm, we fit a multivariate log-normal distribution

as the prior. Asmentioned before, we assumed a uniform prior over zs for the stationary model, such that no prior fitting was required.

Computing fraction deviance explained
For each SWR, themodel fit quality was quantified (Figure 3D) as the fraction of deviance explained by the best fit model compared to

a null model, 1� Dmodel

Dnull
, where deviance D$ is computed as:

Dmodel = 2ðlog pðx1:T jMsatÞ� log pðx1:T jMÞÞ; (Equation 16)
Dnull = 2ðlog pðx1:T jMsatÞ � log pðx1:T jMnullÞ Þ; (Equation 17)

Both the null model,Mnull, and saturated modelMsat, assume spikes to be generated by draws from a Poisson distribution, indepen-

dent across cells and time. They differ, however, in the assumed spike rates: the null model assumes this rate to equal themean firing

rate within population bursts across all neurons within all SWRs in a session at each time bin, while the saturatedmodel assumes this

rate to correspond to the observed spike count in each time bin. pðx1:T jMÞwas computed for each modelM as described above. We

computed deviance explained on one hand for the best-fit model for each SWR, and on the other hand for the random model, as

comparison.

Best-fitting models, and fixed and random effects model comparison of dynamics models
We inferred the distribution of dynamics models underlying the SWRs in a session by random effects analysis (Stephan et al., 2009).

Random effects analysis assumes that the dynamics underlying individual SWRs is drawn from a fixed distribution pðMÞ over the five

dynamics models for each session, and recovers this distribution, pðMjall SWRsÞ from the observed SWRs. It does so by using the

likelihood distribution over models pðxðnÞ1:Tn

���MÞwithin each SWR n, and thus takes the uncertainty acrossmodels within each SWR into

account.

Specifically, random effects model comparison assumes a prior over models pðMjaÞ = rM, where rM is the probability of an SWR

being generated according to dynamics modelM. Across models, the rM ‘s form the vector r which has a Dirichlet prior DirðrjaÞ with

concentration parameters a. We set a to get a weak uniform distribution acrossmodels, equivalent to about 10%of data points (each

element of a is set to 10 for analysis of real data, and 2 for simulated data). Based on this generative model, and given the set of all

spiking data within a session, X = fxðnÞ1:Tn

��n = 1;.;Ngwhere x
ðnÞ
1:Tn

is the spiking activity within SWR n andN is the total number of SWRs

in the session, we compute the posterior pðMjXÞ using Gibbs sampling, as described in Penny et al. (2010). To compare the two spike

emission models described above, we use factorial random effects model comparison (Stephan et al., 2009) to infer the posterior
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over dynamics/emission models by summing each Dirichlet parameter sample across models with the same dynamics/emission

model, respectively (Figures S1K and S1L).

For comparison, we also calculate the inferred distribution of models using the more standard fixed effects analysis, which as-

sumes each SWR is drawn from the same model. Here the likelihood of the spiking data across SWRs within a session, X, is calcu-

lated as pðXjMÞ = QN
n=1 pðxðnÞ1:Tn

��MÞ, which we then invert using Bayes rule assuming a uniform prior onM to obtain the posterior dis-

tribution over models, pðMjXÞ.
For per-SWR analyses, each SWR was ‘‘classified’’ as the model M that had the highest (marginalized) log-likelihood,

log pðx1:T jMÞ. The fraction trajectory (non-trajectory) models is the fraction SWRs best described by the diffusion or momentum (sta-

tionary, Gaussian, or random) models.

Model recovery from simulated data
For each model M, we simulated 100 position sequences in a 2D continuous space (2 m x 2 m) with a time bin size of dt = 1 ms,

according to the dynamics of the respective model. For models with parameters, we drew these parameters for each trajectory

from the prior, pðqMjMÞ, fitted as described above. For all models, we generated neural activity from the simulated trajectory by

binning the trajectory into the same 50 3 50 grid (with 4 cm x 4 cm bins) used for estimating place fields, and, for each place cell,

drawing their activity within each time bin from a Poisson distribution with a rate given by the cell’s place field for the specific position

in that time bin (Equation 3) with gspike set to 2.9 (Figure S3A). For each set of trajectories generated for a fixed modelM, we applied

the same Bayesian model comparison and random effects analysis to the simulated neural data, Xsim, as we describe above for the

real neural data, resulting in an inferred distribution acrossmodels pðMjXsimÞ. Even thoughwe simulated data in time steps of 1ms, for

model recovery we used time bins of dt = 3ms, as for the real neural data. F-score (computed as the harmonic mean of the precision,

TP/(TP+FP), and sensitivity, TP/(TP+FN), where TP = true positive rate, FP = false positive rate, and FN = false negative rate) was used

to quantify our model recovery results. To quantify the reliability of distinguishing trajectory versus non-trajectory dynamics, we

assumed true/false corresponded to trajectory/non-trajectory, respectively, and to quantify the reliability of distinguishing mo-

mentum from diffusion dynamics we assumed that true/false corresponded to momentum/diffusion, respectively.

Extracting maximum likelihood trajectories
Maximum likelihood trajectories were extracted for all SWRs classified as a trajectory model using the Viterbi algorithm (Bishop,

2006). The Viterbi algorithm finds the sequence of positions that gives the highest data likelihood,

bz1:T ;ML = argmax
z1:T

	
pðx1:T ; z1:T jMÞ:



= argmax

z1:T

	
pðx1:T jz1:TÞpðz1:T jMÞ:



; (Equation 18)

using the max-sum algorithm applied to our diffusion model, pðz1:T jM=diffusion; sd = 74 cmÞ and spike generation model

pðx1:T jz1:T Þ, where 74 cm is the mode of the distribution of maximum likelihood parameter fits for sd across SWRs. We chose the

diffusion model to take into account temporal continuity, but not bias the trajectories to contain momentum dynamics. The Viterbi

algorithm is preferred to simply taking the maximum posterior estimate at each time bin, bzt;ML = argmax
zt

pðztjx1:TÞ, as the sequence

of individually most likely positions does not imply that their sequence is the most likely.

Traditional method for classifying SWRs
To compare our analysis to the traditional method for replay classification, we used the set of SWRs classified as containing a tra-

jectory in Pfeiffer and Foster (2015). For visualization purposes, we implemented the traditional method used for replay classification

as described in Pfeiffer and Foster (2015) (Figure 2C). Specifically, for each SWRwe binned spiking activity using a sliding window of

20 ms bins, advanced in increments of 5 ms. Within each time bin we found the position estimate as the posterior mean associated

with the spike likelihood, bzt =P
z
zpðzjxtÞ where pðzjxtÞfpðxtjzÞ and xt here denotes the sliding window-smoothed spike count. The

trajectories plotted in Figure 2C are extracted as the longest sequence of most likely position estimates for which position estimates

across consecutive time bins are at most 50 cm apart. Pfeiffer and Foster (2015) classified SWRs as encoding trajectories if consec-

utive decoded positions were less than 50 cm apart, and had a start-to-end distance of at least 80 cm.

Analysis of place cell activity during movement
To evaluate how the spatio-temporal dynamics of neural activity during SWRs compare to the spatio-temporal activity of place cells

during movement, we applied our Bayesian model comparison analysis described above to snippets of neural activity during move-

ment (Figure 4). Run snippets were selected to approximately match the distribution of total distance traveled within the trajectories

decoded from SWRs (see Extracting maximum likelihood trajectories and Figure S3). Specifically, we first determined a velocity

scaling factor, gv that represented, on average, how much faster trajectories within SWRs evolved in comparison to real movement

of the animal. For each session, we calculated the velocity of each replay trajectory (total distance/duration) and each run period (a

continuous period of time within a session in which the animal was considered ‘‘moving’’ for at least 2 s). We calculated the scaling
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factor between the mean replay trajectory velocity and mean run period velocity for each session, and defined the velocity scaling

factor gv as the average of the scaling factors across all sessions. This procedure found that the velocity of replay trajectories was on

average 19.7 times higher than real movement.

Next, we selected the run snippets. For each session, the duration distribution of run snippets was determined by up-scaling the

duration of SWRs by the velocity scaling factor.We selected run snippets by randomly sampling a run period and then randomly sam-

pling a start time within that run period, such that the entire duration of the run snippet fell within the run period. In order to match the

distribution of sequence lengths T between SWRs and run snippets, we also up-scaled the time bin size used for run snippet analysis

by the velocity scaling factor, to dt = 60 ms (Figure S3). We then applied the model comparison analysis to the neural data within the

set of run snippets exactly as outlined above, except that in Equation 3 we set gspike to reflect the fact that neural activity came from

the same ‘‘movement’’ periods that were used to estimate place fields.

Diffusion coefficient analysis
Following Stella et al. (2019), we asked if the relationship between distance and time for replay trajectories could be described by a

power law relationship of the form ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CdðtÞ2D

q
fta; (Equation 19)

where d is the distance between two points in time within a replay trajectory, and t is the time elapsed between those two time points.

An a-value of 0.5 corresponds to Brownian motion, or a random walk, while deviations from 0.5 are inconsistent with Brownian mo-

tion. We evaluate if replay trajectories evolve according to Brownian motion by plotting the time-distance relationship in log-space,

and use linear regression applied to this log-log plot to find the coefficient a, which corresponds to the slope of the log-log time-dis-

tance relationship. To avoid confounds, we restricted this analysis to SWRs best-fit by a trajectory model (either the diffusion or mo-

mentum model). Replay trajectories were decoded from neural activity as described in Extracting maximum likelihood trajectories.

For each replay trajectory within a session we found the squared distance d2
j between all pairs of decoded positions separated by all

multiples of the time bin used for trajectory decoding Dt=dt, where Dt is the time elapsed between decoded positions and dt is the

decoding time bin. This resulted in a set of distance-time pairs, ðd2
j ;Dtj =dtÞ, for each decoded position pair j across all trajectories

within a session. We then found the mean distance, ~d
2
for each multiple of the decoding time bin, fit a linear regression model

per session to

�
log

ffiffiffiffiffiffi
~d
2

q
; log

�
Dt
dt

��
, which gave the estimate of coefficient a for that session as the slope of the regression.

To assess if the coefficient a was significantly larger than 0.5, we generated 1000 bootstrap samples with replacement of sets of

trajectories within a session and applied the same procedure to each session. We then computed the fraction of the bootstrap sam-

ples for which awas less than 0.5, which results in the p values reported in the main text and Figure 5. We applied this same analysis

across sessions to trajectories decoded from neural activity during run snippets (the same run snippets selected for the model com-

parison analysis on movement data), as well as to the set of 100 trajectories simulated under diffusion dynamics (as described in

Model recovery from simulated data). We chose to visualize the distance-time relationship in terms of number of time bins, rather

than time elapsed so that SWRs and run snippets could be visualized at the same scale.

Splitting SWRs into ‘‘home’’ and ‘‘away’’ events
SWRs were split into ‘‘home’’ and ‘‘away’’ events according to the current location of the animal at SWR onset: a ‘‘home’’ event if the

animal is less than 5 cm from the home well, and an ‘‘away’’ event if the animal is elsewhere in the environment. In Figures S5A, S5B,

and S6 ‘‘away’’ event is redefined as if the animal is less than 5 cm from the goal well, rather than anywhere in the environment other

than within 5 cm of the home well.

Analysis of correlation between replay trajectories and behavior
Toquantify thecorrelationbetween replay trajectoriesandbehavior,we implemented themethoddescribed inPfeifferandFoster (2013).

Replay trajectories were extracted from SWRs as described in Extracting maximum likelihood trajectories. The future/past path of the

animalwas definedas the immediate future/past path of the animal for either 10 s after/before theSWRor until a direct distanceof 75cm

from the current location of the animal during the SWRwas reached, whichever threshold gives the greater direct distance. To calculate

the correlation between the replay trajectory and the behavioral path, the angular distance between the replay trajectory and behavioral

trajectory was found at a series of progressively larger radii from the current location of the animal during the SWR. Specifically, the

crossing points between the behavioral trajectory and the replay trajectory with a circle centered on current location of the animal

was found for each radius, and the angular distance between these two crossing points was calculated (as visualized in Figure 7A).

The minimum radius was 5 cm, increased in increments of 3 cm until either 75 cm or the end of the replay trajectory was reached.

For each session, a histogram of angular displacements was calculated using all crossings across SWRs within the session, with

SWRs split into ‘‘home’’ and ‘‘away’’ events as described in Splitting SWRs into ‘‘home’’ and ‘‘away’’ events. This analysis was applied

separately to either all SWRs classified as a trajectory model or all SWRs previously classified by the traditional method. Chance

correlation was found by 2000 shuffles in which a behavioral path and SWR was selected at random from any session, the behavioral
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path was shifted to the current location of the animal during the SWR, and the angular distance was calculated using the samemethod

described above.

Figure details
Figure 1. Panel B shading visualizes ‘‘moving’’ and ‘‘not moving’’ periods as described in Data acquisition and behavior, and the

example place fields in panel C were computed using the place field data from ‘‘moving’’ periods as described in Estimating place

fields. The spike generation model in panel C and the dynamics models in panel D are described in the Spike generation model and

Dynamics models sections. The graphical models in D describe the statistical relationship between variables in each dynamics

model, whose details are given in Dynamics models.

Figure 2. The heatmaps in panelAwere computed from themarginal decoded position per time bin pðztjx1:T ;MÞ for each dynamics

model described in Description of state-space models. For the diffusion and momentum models, the marginal decoded positions

were found by the forward-backward algorithm (Bishop, 2006). The other, non-trajectory, models had a simpler form that supported

a simpler computation of the position estimates. We normalized these position estimate separately for each time bin, ~pðztjx1:T ;MÞ =
pðztjx1:T ;MÞ=P

zt

pðztjx1:T ;MÞ, summed them over time ~pðz1:T jx1:T ;MÞ = PT
t = 1

~pðztjx1:T ;MÞ, and plotted this sum. While the sum is no

longer a real probability distribution, it is nonetheless useful for visualization. In panel B, the distribution over models per SWR was

computed as described in Marginalizing over latent position sequences and model parameters. In panel C, the heatmaps were

computed by obtaining the decoded position per time bin pðztjxtÞ as calculated by the traditional method described in Traditional

method for classifying SWRs, then normalized, summed, and plotted as described for panel A. The trajectory plotted is as described

in Traditional method for classifying SWRs.

Figure 3. The distribution over models in panel A was inferred by random effects analysis as explained in Best-fitting models, and

fixed and random effects model comparison of dynamics models, the comparison to the traditional method as described in Tradi-

tional method for classifying SWRs, the simulated data model recovery as described in Model recovery from simulated data, and the

deviance explained as described in Computing fraction deviance explained.

Figure 4. The run snippets visualized in panel A were selected as described in Analysis of place cell activity during movement for

example session 1 (rat 1, day 1). The distribution over models was computed by random effects analysis as described in Best-fitting

models, and fixed and random effects model comparison of dynamics models. The example run snippets decoded positions are

visualized following the same procedure outlined for Figure 2A (above), and the distribution over models per-run snippet was

computed as described in Marginalizing over latent position sequences and model parameters.

Figure 5. The heatmaps in panels A and B were computed as described for Figure 2A (above), and the decoded trajectories were

obtained as described in Extracting maximum likelihood trajectories. For panelC, the time-distance relationship, estimated diffusion

coefficient in panel, and bootstrap significance testing (inset) are described in Diffusion coefficient analysis.

Figure 6. The data presented here agglomerates SWRs best fit by a trajectory model, as described in Best-fitting models, and fixed

and random effects model comparison of dynamics models, across all sessions, and splits SWRs into ‘‘home’’ and ‘‘away’’ events as

described in Splitting SWRs into ‘‘home’’ and ‘‘away’’ events.

Figure 7. ‘‘Trajectory model’’ SWRs are selected as described in Best-fitting models, and fixed and random effects model com-

parison of dynamics models, ‘‘previously classified’’ SWRs are selected as described in Traditional method for classifying SWRs,

and SWRs are split into ‘‘home’’ and ‘‘away’’ events as described in Splitting SWRs into ‘‘home’’ and ‘‘away’’ events. The angular

distance was quantified as described in Analysis of correlation between replay trajectories and behavior.
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Supplementary Notes

Momentum dynamics model formulation as a second-order Markov model

As described in Methods, the momentum model assumes that the velocity follows an Ornstein-Uhlenbeck (OU) that is
independent in each spatial dimension j ∈ {x, y}, and given by

dvj
dt

= −λmvj(t) + σmηj,m(t), (S1)

where λm determines the decay, σm is the diffusion coefficient, and ηj,m(t) is a Gaussian white noise process. The latent
position is fully determined by this velocity, that is dzj/dt = vj(t).

We turn this dynamics model into a discrete-time second-order Markov model in two steps. We will do so for each
spatial dimension separately, and will drop the ·j subscript to keep the notation uncluttered. First, note that the linear-
Gaussian nature of the OU process implies that v(t) remains Gaussian at any point in time. Furthermore, if v(t) is known
at time t, its moments evolve for δt ≥ 0 according to

〈v(t+ δt)〉 = v(t)e−λmδt, var (v(t+ δt)) =
σ2
m

2λm

(
1− e−2λmδt

)
. (S2)

As a consequence, we can write v(t+ δt) as

v(t+ δt) = v(t)e−λmδt + εδt, with εδt ∼ N
(

0,
σ2
m

2λm

(
1− e−2λmδt

))
. (S3)

Second, we approximate dz/dt by finite differences, resulting in

z(t)− z(t− δt)
δt

≈ v(t). (S4)

Substituting this approximation into Eq. (S3) results in

z(t+ δt)− z(t)
δt

=
z(t)− z(t− δt)

δt
e−λmδt + εδt. (S5)

Solving for z(t+ δt) yields
z(t+ δt) =

(
1 + e−λmδt

)
z(t)− e−λmδtz(t− δt) + δtεδt, (S6)

such that z(t+ δt) is distributed as

p (z(t+ δt)|z(t), z(t− δt)) = N
(
z(t+ δt)|

(
1 + e−λmδt

)
z(t)− e−λmδtz(t− δt), σ

2
mδt

2

2λm

(
1− e−2λmδt

))
. (S7)

If we let z(t) = (zx(t), zy(t))
T , and consider that zx(t) and zy(t) evolve independently, their joint evolution can be written

as the second-order Markov chain

p (z(t)|z(t− δt), z(t− 2δt)) = N
(
z(t)|

(
1 + e−λmδt

)
z(t− δt)− e−λmδtz(t− 2δt),

σ2
mδt

2

2λm

(
1− e−2λmδt

)
I

)
. (S8)

In Methods, we provide this equation with time-discretized indices on the z’s.
Due to the second-order Markov chain-nature of this process, we need to handle the first time-discretized transition

p (z(δt)|z(0)) separately, as it cannot depend on z(−δt). To do so, we again rely on the finite-difference approximation,
such that v(δt)δt = z(δt)− z(0). If we now assume a prior v(δt) ∼ N

(
0, σ2

m0/
√
δtI
)

, the first step becomes

p (z(δt)|z(0)) = N
(
z(δt)|z(0), σ2

m0δtI
)
. (S9)

Diffusion scaling of the momentum dynamics model

The diffusion scaling factor ξ is defined by how the mean square displacement r(t)2 scales with time. This displacement
is defined as the distance from the origin, r(t) =

√
(zx(t)− zx(0))2 + (zy(t)− zy(0))2, such that r(t)2 = (zx(t)−zx(0))2 +

(zy(t)− zy(0))2. For a scaling factor ξ, this mean square displacement scales as〈
r(t)2

〉
∼ tξ. (S10)

1



In the main text and in Stella et al. (2019), we report scaling of the root mean square displacement
√
〈r(t)2〉 ∼ tα, that

relates to the diffusion scaling factor by ξ = 2α. For standard diffusion dynamics, this diffusion scaling factor is ξ = 1 or
α = 1/2. Here, we consider this scaling factor for our momentum dynamics model.

To find this scaling factor, note that the momentum model features independent, and equivalent, dynamics along
the x- and y-directions. Therefore,

〈
r(t)2

〉
=
〈
(zx(t)− zx(0))2

〉
+
〈
(zy(t)− zy(0))2

〉
= 2

〈
(zx(t)− zx(0))2

〉
. Thus, it is

sufficient to find this scaling for one spatial dimension. For this reason, we will drop the dimension-identifying subscripts
in what follows.

The momentum dynamic’s model is defined by Eq. (S3), dz/dt = v(t), and v(0) ∼ N
(
0, σ2

m0

)
. To find

〈
(z(t)− z(0))2

〉
,

let us first consider the moments of v(t), which can be shown to follow

〈v(t)〉 = 〈v(0)〉 e−λmt = 0, (S11)

cov (v(s), w(t)) = σ2
m0e

−λm(t+s) +
σ2
m

2λm

(
e−λm|t−s| − e−λm(t+s)

)
, (S12)

var (v(t)) = σ2
m0e

−2λmt +
σ2
m

2λm

(
1− e−2λmt

)
, (S13)

where v(s) and w(t) are different realizations of the velocity process, with different associated v(0) and v(0) drawn from
the prior. Except for the terms introduced by the prior, these moments reflect those of a standard Ornstein-Uhlenbeck
process.

In the momentum dynamics model, the location z(t) is simply the sum of the momentary velocities, z(t) = z(0) +∫ t
0
v(s)ds, and so a linear function of them. As these velocities are Gaussian, so is the location. Therefore, it is sufficient

to find its first- and second-order moments to fully describe the location evolution. As the mean velocity is zero, the
location’s mean is simply given by

〈zj(t)〉 = zj(0) + 〈vj(0)〉
∫ t

0

e−λsds = zj(0). (S14)

To find
〈
(z(t)− z(0))2

〉
, we first find

〈
z(t)2

〉
, which is given by

〈
z(t)2

〉
= z(0)2 + 2z(0)2

〈∫ t

0

v(s)ds

〉
+

∫ t

0

∫ t

0

cov (v(s), w(u)) duds

= z(0)2 +

∫ t

0

∫ t

0

σ2
m0e

−λm(s+u)duds

+
σ2
m

2λm

∫ t

0

[∫ s

0

(
e−λ(s−u) − e−λm(s+u)

)
du+

∫ t

s

(
e−λ(u−s) − e−λm(s+u)

)
du

]
ds

= z(0)2 +
σ2
m0

λ2m

(
1− e−λmt

)2
+

σ2
m

2λ3m

(
−3 + 4e−λmt − e−2λmt + 2λmt

)
.

(S15)

Here we have split the |s− u| in the OU covariance into two separate integrals. The final expression for
〈
(z(t)− z(0))2

〉
thus reads 〈

(z(t)− z(0))2
〉

=
σ2
v0

λ2m

(
1− e−λmt

)2
+
σ2
m

λ2m
t+

σ2
m

2λ3m

(
−3 + 4e−λmt − e−2λmt

)
. (S16)

To gain insight into its time scaling, let us consider the limit in which λm � t, that is, where the velocity evolves very
slowly when compared to t. In this limit, the mean squared displacement becomes

lim
λm→0

〈
(z(t)− z(0))2

〉
= σ2

m0t
2 +

σ2
m

3
t3. (S17)

Therefore, in this limit, the momentum model features a super-diffusive diffusion scaling factor of ξ = 3 or α = 3/2. If we
instead look at long times t, we find

lim
t→∞

〈
(z(t)− z(0))2

〉
=
σ2
m

λ2m
t, (S18)

such that, in this limit, the diffusion scaling factor approaches that of a standard diffusion, ξ = 1. This is to be expected
as, in this limit, positive and negative velocity deflections cancel. Note that all of the above only applies for unbounded
trajectories. Thus, for our use case it only applies to trajectories that are sufficiently far award from the boundary. For
those trajectories, we expect to see super-diffusivity as long as λm is sufficiently small when compared to t.
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Computational complexity of evaluating the model evidence

Here we derive the computational complexity associated with computing the model evidence p (x1:T |M, θM ) for different
models M , and where x1:T is the sequence of neural population activity patterns in time bins t = 1, . . . , T across N
neurons, and where θM is the parameter vector of model M . In general, the model evidence is given by

p (x1:T |M, θM ) =
∑
z1:T

p (x1|z1) p (z1|M, θM )

T∏
t=2

p (xt|zt) p (zt|z1:t−1,M, θM ) . (S19)

This expression simplifies in different ways for different models. We will first discuss the computational complexity for the
likelihood p(xt|zt), which is shared across all models. Second, we will discuss the overall computational complexity, first
for non-trajectory models, and then for trajectory models.

Likelihood

The likelihood p(xt|zt) is computed for a population of N neurons over a spatial grid with K bins. We need to store
neural activity of N neurons for each time bin, coming at space complexity O(NT ). When evaluating the likelihood, we
need to do so for each neuron, each zt, and each time bin, such that the time complexity is O(NKT ).

Non-trajectory models

Non-trajectory models feature model dynamics that are independent across time-steps, that is p(zt|z1:t−1,M, θM ) =
p(zt|M, θM ). Thus, the model evidence simplifies to

p (x1:T |M, θM ) =

T∏
t=1

∑
zt

p (xt|zt) p (zt|M, θM ) , (S20)

where p (zt|M, θM ) differs across the various dynamics models.

Stationary dynamics model. For the stationary dynamics model, M = stationary, p (zt|M, θM ) = δzt,zs , where θM =
{zs} is the only model parameter, which has a uniform prior, p(zs) = 1/K. For this model, the model evidence simplifies
to

p (x1:T |M, θM ) =

T∏
t=1

p (xt|zt = zs) , (S21)

which has a space and time complexity of O (NT ). The time complexity is lower than that of the likelihood computation,
as the likelihood in the above expression is evaluated for a single zt = zs, rather than all of them. Once we marginalize
over the model parameters, the model evidence becomes

p (x1:T |M) =
1

K

∑
zs

T∏
t=1

p (xt|zt = zs) , (S22)

with a space complexity of O (NT ) and time complexity of O (NKT ).

Gaussian dynamics model. For the Gaussian dynamics model, M = gaussian, p (zt|M, θM ) = N
(
zt|µ, σ2

gI
)
, with

model parameters θM =
{
µ, σ2

g

}
, and uniform µ-prior, p (µ) = 1/K. Thus, the model evidence is given by

p (x1:T |M, θM ) =

T∏
t=1

∑
zt

p (xt|zt)N
(
zt|µ, σ2

gI
)
, (S23)

which has a space and time complexity of O (NKT ). Marginalizing over µ yields

p
(
x1:T |M,σ2

g

)
=

1

K

∑
µ

T∏
t=1

∑
zt

p (xt|zt)N
(
zt|µ, σ2

gI
)
, (S24)

with a space complexity of O (NKT ) and a time complexity of O
(
NK2T

)
. Marginalization over σ2

g is performed over a
fixed grid of parameter values, and thus only adds an additional constant scaling to the complexity.
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Random dynamics model. The random dynamics model, M = random has likelihood p(zt|M) = 1/K and no param-
eters. Thus, it’s associated model evidence is

p (x1:T |M) =
1

KT

T∏
t=1

∑
zt

p (xt|zt) , (S25)

with space and time complexities O (NKT ).

Trajectory models

We evaluate the model evidence of trajectory models using the forward pass of the forward-backward algorithm for
Hidden Markov Models (HMMs). Assuming we know p (zt−1|x1:t−1), and implicitly conditioning on M and θM , the
forward pass operates in two steps. In the prediction step, we find p (zt|x1:t−1) by marginalization,

p (zt|x1:t−1) =
∑
zt−1

p (zt|zt−1) p (zt−1|x1:t−1) . (S26)

The update step includes the latest observation xt by Bayes’ rule,

p (zt|x1:t) =
p (xt|zt) p (zt|x1:t−1)

p (xt|x1:t−1)
(S27)

For this step we first compute the numerator for all zt, and then find the normalizing denominator by p (xt|x1:t−1) =∑
zt
p (xt|zt) p (zt|x1:t−1). These two steps are alternated to compute p(z1|x1), then p(z2|x1:2), and so on, until p(zT |x1:T ).

This update step’s normalizer is in turn used across time to compute the model evidence by

p (x1:T ) = p (x1)

T∏
t=2

p (xt|x1:t−1) . (S28)

For both trajectory models, model parameters are marginalized over a fixed parameter grid, such that this marginalization
only adds a constant scaling to the respective model complexities.

Diffusion dynamics model. The diffusion dynamics model, M = diffusion, uses a Gaussian transition structure,
p (zt|zt−1) ∝ N

(
zt|zt−1, σ2

dI
)
, appropriately normalized on the discretized zt grid. Naively, the prediction step could be

computed by
p (zT |x1:t−1) =

∑
zt−1

Ñ
(
zt|zt−1, σ2

dI
)
p (zt|x1:t−1) , (S29)

where Ñ (·) denotes a Gaussian distribution normalized on the grid, and with space complexity O
(
K2
)

(assuming a pre-
computed p (zt|zt−1)) and time complexity O

(
K2T

)
across all time steps. The update step’s time and space complexity

instead is O (NKT ) across all time steps. Thus, the overall time and space complexity of such a naive implemen-
tation is O

(
NK2T

)
. We can further reduce this complexity by factorizing the transition structure into p (zt|zt−1) ∝

N
(
zx,t|zx,t−1, σ2

d

)
N
(
zy,t|zy,t−1, σ2

d

)
. Then, the prediction step becomes

p (zx,t, zy,t|x1:t−1) =
∑
zy,t−1

Ñ
(
zy,t|zy,t−1, σ2

d

) ∑
zx,t−1

Ñ
(
zx,t|zx,t−1, σ2

d

)
p (zx,t−1, zy,t−1|x1,t−1) , (S30)

with space complexity O (K) (again assuming pre-computation of p (zj,t|zj,t−1) for j ∈ {x, y}), and time complexity
O (KT ) across all time steps. Overall, this reduces the space and time complexity of computing the model evidence to
O (NKT ).

Momentum dynamics model. The momentum dynamics model, M = momentum yields a second-order HMM with a
transition structure p (zt|zt−1, zt−2) whose exact expression is given further above and in the main text. For such second-
order HMMs, we propagate the joint posterior p(zt, zt−1|x1:t) through time, as follows. The prediction step changes to

p (zt, zt−1|x1:t−1) =
∑
zt−2

p (zt|zt−1, zt−2) p (zt−1, zt−2|x1:t−1) . (S31)
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As the posterior itself requires spaceO
(
K2
)
, a naive implementation of this prediction step has space complexityO

(
K3
)

(again assuming pre-computation of p (zt|zt−1, zt−2)) and time complexity O
(
K3T

)
across all time steps. The update

step changes to

p (zt, zt−1|x1:t) =
p (xt|zt) p (zt, zt−1|x1:t−1)

p (xt|x1:t−1)
, (S32)

with O
(
NK2T

)
space and time complexity. The model evidence is computed as before, from the product of update

step normalizers across times. Overall, this results in a space and time complexity of O
(
NK3T

)
. This can be reduced

by factorizing the transition dynamics into p (zt|zt−1, zt−2) = p (zx,t|zx,t−1, zx,t−2) p (zy,t|zy,t−1, zy,t−2), simplifying the
prediction step to

p (zt, zt−1|x1:t−1) =
∑
zy,t−2

p (zy,t|zy,t−1, zy,t−2)
∑
zx,t−2

p (zx,t|zx,t−1, zx,t−2) p (zt−1, zt−2|x1:t−1) , (S33)

with reduced space complexityO
(
K2
)

and time complexityO
(
K2T

)
. Overall, this reduces the computational complexity

of computing the model evidence to O
(
NK2T

)
in both space and time.
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Supplementary Figures 
 

 
Figure S1. Analysis of model variants for our Bayesian model comparison method. Related to Figure 
3.  
a. Bayesian model comparison gives consistent results across different time bin sizes. We replicated 
our Bayesian model comparison analysis (Fig. 3a) for different time bin sizes (colors). The results for 3ms 
bins are described in the main text. Here we plot the inferred distributions of dynamics models underlying 
the generation of SWR spikes, using random effects model comparison (mean ± SD across sessions; gray 



dots = individual sessions). All time bin sizes gave very similar results (exceedance probability of momentum 
model ! 1 for all sessions and all time bin sizes). 
b. Bayesian model comparison takes the relative likelihood distribution into account. Random effects 
analysis takes relative likelihood distribution into account and is less sensitive to outliers than standard fixed 
effects Bayesian model comparison. For comparison to our random effects Bayesian model comparison 
presented in the main text (blue), we also compute the inferred distribution of models given the data from all 
SWRs, p(M|X), by fixed effects Bayesian model comparison (green), as well as the fraction of SWRs with 
maximum likelihood for each model (purple), mean ± SD across sessions; gray dots = individual sessions. 
Fixed effects Bayesian model comparison compares models by summing across the log-likelihoods for all 
SWRs within a session, before inverting them according to Bayes rule to find the shown posterior over 
models. This makes this approach sensitive to outlier SWRs for which one model fits the data much better 
than the other models (Stephan et al., 2009). As a result, it assigns probability 1 to the momentum model for 
all sessions. We furthermore show for each dynamics model the fraction of SWRs within each session that 
yield that maximum likelihood (purple). While this fraction is insensitive to the relative difference of 
likelihoods across models within each SWR, it is a useful measure to decide for individual SWRs the most 
likely model (Fig. 2b), which we use in the main text for selecting SWRs best-fit by a trajectory model. The 
random effects approach, in contrast, only provides an aggregate measure, rather than a per-SWR 
measure. 
c. Our Bayesian model comparison approach favors simpler models over more complex ones when 
both explain the spiking data equally well (MacKay, 1995). To show this, we here plot the distribution of 
best-fit models, grouping SWRs into quartiles by duration. The fraction of SWRs in each quartile best 
described by each dynamics model is indicated with a stacked bar plot. This illustrates how Bayesian model 
comparison prefers simpler models for sparser data: for short location sequences that only span a few time 
bins, the limited number of spikes might not support telling apart pure diffusion dynamics from dynamics with 
momentum, even if the true underlying dynamics feature momentum. In such circumstances, the associated 
SWR will be classified as momentum-free diffusion rather than diffusion with momentum. This can be seen 
by the larger fraction of the momentum model explaining SWRs better than the diffusion model as SWR 
lengths increase. For even shorter sequences with even less spikes, location sequences with momentum 
might equally well be explained by a random, or even a stationary model, such that our comparison will 
prefer non-trajectory dynamics (see first quartile). This illustrates how our method handles the irreducible 
uncertainty inherent to the limited data available in a principled way. 
d-g. Bayesian model comparison applied to high-synchrony events (HSEs). Bayesian model 
comparison gives similar results when applied to HSEs as when applied to SWRs for random effects 
analysis (d), maximum log-likelihood (e), and fraction deviance explained (f), though a slightly smaller/larger 
fraction of HSEs are better described by the momentum/stationary models (exceedance probability of 
momentum model ≈ 1 for all sessions for both SWRs and HSEs). f. Splitting HSEs into those that overlap 
with SWRs (54.3 ± 10.4%, mean ± SD across sessions) and those that do not reveals that the higher 
fraction of HSEs best fit by the stationary model is driven by HSE’s that do not overlap with SWRs, for which 
a larger fraction of HSE’s are best fit by the stationary model. 
h-j. Bayesian model comparison applied to shuffled data. We shuffled data by either randomly shuffling 
the neural identity separately for each SWR (red), or by randomly shifting place fields (assuming connected 
top/bottom and left/right arena edges), separately for each neuron, but consistently across all SWRs 
(yellow). Both perturbations resulted in the momentum model to cease being the dominant model in both the 
random effects model comparison (h), as well as the distribution of maximum-likelihood models (i). 
Exceedance probabilities (mean ± SD across sessions) for neuron ID shuffle = random: 0.93 ± 0.2, 
Gaussian: 0.07 ± 0.2, and for place field shift = random: 0.29 ± 0.42, diffusion: 0.22 ± 0.37, momentum: 0.5 
± 0.5. Shuffling neuron identities resulted in a stronger drop of spatiotemporal structure and made the 
random model dominant. Both perturbations resulted in a poorer fit to spiking data, as illustrated by the drop 



in deviance explained of the best fit model to below that of the random model applied to non-shuffled SWRs 
(j).  
k-m. Analysis of spike emission model. Factorial random effects model comparison (Stephan et al., 2009) 
reveals that neural data during SWRs is better fit by assuming place fields are scaled by a constant factor 
across neurons (Poisson, or “P”, emission model variant), rather than assuming this scaling factor to vary 
independently across neurons and SWRs (negative binomial, or “NB”, emission model variant; see STAR 
Methods). Here we plot the inferred random effects model comparison distributions collapsed over emission 
models (k; exceedance probability of momentum model ≈ 1 for all sessions) or dynamics models (l; 
exceedance probability of Poisson model ≈ 1 for all sessions); mean ± SD across sessions and gray dots = 
individual sessions. m. Simulating data according to each dynamics and emission model combination 
(similar to main text Fig. 3c), we find reliable model recovery. For the limited data of simulated SWRs, data 
generated with the more complex “NB” emission model variant is more likely mistaken for data generated 
with the simpler “P” emission model variant, illustrating the implicit model complexity penalty of Bayesian 
model comparison. 
  



 
 

 
Figure S2. Comparing previously classified SWRs to those classified as trajectories by our 
approach. Related to Figure 3. 
a. Only a small fraction of previously classified SWRs are best described by non-trajectory model. 
Specifically, our model comparison classified 8.3% of SWRs previously classified as trajectories as non-
trajectories (out of 2956 SWRs, 48 as stationary, 2 as stationary Gaussian, and 8 did not meet the 
population burst threshold criteria (see Methods and Fig. S7)). Three examples of such SWRs are shown 
here, all classified as stationary. The green traces show the maximum a-posteriori trajectories decoded by 
the traditional method. All shown trajectories fit the criteria of maximum distance between consecutive points 
and minimum total distance used by Pfeiffer & Foster (2015). However, these criteria only seem to be 
satisfied due to noise in the decoded positions, as can be seen from the heatmaps, which visualizes these 
decoded positions by their posteriors, summed over time (see Fig. 2a).  
b. Histogram (top row) and cumulative fraction (bottom row) of replay trajectory descriptive statistics 
depicting the duration, total distance, start-to-end distance, and velocity (defined as total distance divided by 
duration) for either the set of all SWRs classified as a trajectory by our model comparison (purple), or the set 
of previously classified SWRs (green). Previously classified SWRs featured trajectories that were longer in 
duration (independent t-test; t(3058)=4.30 two-sided, Bonferroni-corrected p=5.34x10-5), distance 
(independent t-test; t(3058)=6.08 two-sided, Bonferroni-corrected p<10-6), and start-to-end distance 
(independent t-test; t(3058)=7.58 two-sided, Bonferroni-corrected p<10-6), and were faster than the SWRs 
we identified as encoding trajectories (independent t-test; t(3058)=4.12 two-sided, Bonferroni-corrected 
p=1.17x10-4). Previously classified trajectories were those used in Pfeiffer and Foster (2015), who selected 
trajectories by applying heuristic criteria, such as minimum start to end distance, to the sequence of 
posterior mean decoded locations. Here, we instead decoded trajectories using the more robust Viterbi 
algorithm, which causes some of the SWRs previously classified as trajectories to appear to violate these 
heuristic criteria (e.g., shorter start-to-end distance than allowed).  
 



 
Figure S3. Velocity scaling in SWRs and run snippet selection. Related to Figure 4.  
For a fair comparison between SWRs and neural activity during movement, we selected run snippets 
(randomly selected snippets of neural data from periods in which the rat was moving > 5cm/s) for our model 
comparison analysis that matched both the distance distribution we observed across SWRs and distribution 
of sequence lengths (bottom row). If we instead matched the distribution of total number spikes between 
SWRs and run snippets, the run snippets traverse much shorter distances than the decoded replay 
trajectories (top row). 
a. Log-log plot of the average firing rate during movement, vs. during population bursts. Average firing rate is 
calculated for each unit separately (points on scatter plot, colored according to session) as the total number 
of spikes emitted over the total duration within periods that the rat was moving > 5 cm/s for each unit 
(movement), or within population bursts (Fig. S7). The slope of a linear regression, fitted separately to the 
data of each session (dashed lines, one per session), appears as an offset in the log-log plot. The solid gray 
line indicates the expected slope if the firing rates were equal across sessions. The average slope, or 
average population activity scaling across all sessions, was 2.9 (solid black line). This spike count scaling 
factor was used to scale the place cell firing rates that were estimated from data while the rats were moving 
(Fig. 1), for use in the spike generation model of SWR activity. 
b. Example run snippets selected for session 1 (run snippets in color, full behavioral trajectory throughout 
the session in gray). Run snippet durations here were chosen by up-scaling the duration distribution of SWR 
population bursts by the spike count scaling factor of 2.9 determined in a. 
c. Distribution of total number of spikes within all SWRs and all run snippets across all sessions.  
d. Distribution of total trajectory distance within all decoded SWRs and all run snippets across all sessions. 
e. Distribution of sequence lengths (i.e., number of time bins per sequence) within all decoded SWRs and 
run snippets across all sessions. In order to provide the same sequence lengths to the Bayesian model 
comparison for run snippets as for SWRs despite the longer durations of the run snippets, we also scaled 
the time bin size by the spike count scaling factor (3ms for SWRs, 9ms for run snippets). 
f. To match the distance distributions rather than the distribution of spike counts, we determined the velocity 
scaling factor between movement and decoded SWR trajectories. For each session we compared the 
average velocity of the decoded replay trajectories to the average velocity across all run periods during 
movement (mean ± SD for each session). SWR velocities were on average 19.7 times higher than 
behavioral run velocities. 
g-j. Same as b-e, but for run snippets in which the duration distribution was calculated by scaling the 
population bursts duration distribution by the velocity scaling factor, rather than the spike count scaling 
factor. The time bin size used in j was also calculated by scaling the SWR time window by the velocity 
scaling factor (3ms for SWRs, 60ms for run snippets).  



 
Figure S4. Decoding accuracy. Related to Figure 5. 
Cumulative histograms for each session (lines = sessions) of the position error (absolute distance) between 
animals’ true trajectories and those decoded using the Viterbi algorithm applied to the diffusion model, 
where the absolute distance is calculated at each time point within the trajectory. 
 
 
  



 
 

Figure S5. Differences in descriptive trajectory statistics are qualitatively preserved for more 
restrictive definition of “away” events, even when matching the distribution of trajectory durations, 
but disappears for previously classified trajectories. Related to Figure 6. 
a. We here define “away” events as events initiated while the animal is at the goal location, rather than while 
the animal is anywhere other than the home location (used in the main text). Compared to Fig. 6 in the main 
text, we see the same qualitative home/away differences for all descriptive statistics duration, distance, start-
to-end distance, and velocity, but with larger effect sizes. Statistical significance by independent t-test, two-



sided, Bonferroni-corrected p-values: duration t(960)=2.9, p=0.011, total distance t(960)=4.9, p=4.2x10-6, 
start-to-end distance t(960)=5.8, p<1x10-6, velocity t(960)=4.6, p=1.7x10-5).  
b. These differences persist for this definition of “away” events when matching the duration distributions by 
subsampling per bin from the trial type (home or away) with more trajectories. In this case, the difference in 
total distance becomes non-significant, but remains significant for start-to-end distance and velocities. 
Statistical significance by independent t-test, two-sided, Bonferroni-corrected p-values: duration 
t(820)=0.012, p=1.00, total distance t(820)=1.69, p=0.27, start-to-end distance t(820)=3.08, p=6.4x10-3, 
velocity t(820)=3.34, p=2.6x10-3). 
c. Restricting our analysis to only previously classified SWRs, none of the trajectory statistics differ 
significantly between home and away events except for duration, which is significant but with a small effect 
size. Statistical significance by independent t-test, two-sided, Bonferroni-corrected p-values: duration 
t(642)=2.47, p=0.042, total distance t(642)=1.62, p=0.32, start-to-end distance t(642)=1.89, p=0.18, velocity 
t(642)=0.11, p=1.00). 
 
  



 

 
 
Figure S6. Predictive analysis remains qualitatively similar for more restrictive definition of “away” 
events. Related to Figure 7.  
As in Figure S7a, we here define “away” events as events initiated while the animal is at the goal location, 
rather than anywhere other than the home location. We see the same results qualitatively for all conditions 
as shown in Figure 7.  
 



 
Figure S7. Population burst selection and relation between dynamics models. Related to STAR 
Methods. 
To avoid confounding our location decoding analysis by periods of low neural activity which are 
uninformative about location, we restricted this analysis to periods (or “population bursts”) in which above a 
minimal number of spikes was observed. 
a. Two example SWRs depicting the process for selecting the population burst within an SWR. Left plots 
show the spike raster within the LFP-identified SWR. The black trace in the right plots show the average 
firing rate within the SWR across time, calculated using a 12 ms moving average. Gray dashed line indicates 
the threshold for the population burst start and end, and the red vertical dashed lines indicate for that ripple 
the identified start and stop times of the population burst. 
b. Histogram of the duration of full SWRs compared to a histogram of the duration of the selected population 
bursts. 
c. Histogram of the total spikes within full SWRs compared to a histogram of the total spikes within the 
selected population bursts. Despite the decrease in duration from selecting population bursts, almost all 
spikes are preserved.   
d. The Gaussian dynamics model has model evidence equivalent to the stationary/random dynamics models 
(orange/blue diamonds) once its standard deviation parameter becomes small/large. The three examples 
depict SWRs that are best described by the stationary model (left), Gaussian model (middle), and random 
model (right).  
e. The momentum dynamics model has model evidence equivalent to the diffusion model (cyan diamond) 
once the decay parameter becomes large. The two examples depict SWRs that are best described by the 
momentum model (left), and diffusion model (right). To keep model evidences comparable across models, 
the model evidences shown in (d) & (e) marginalize over the latent state sequences, 𝒛!:# , but not the 
models’ parameters, 𝜽. Marginalizing over parameters would lower the model evidence for more complex 
models (e.g., momentum when compared to diffusion, 𝑝(𝑋|𝑀 = momentum) ≤ max

$
𝑝(𝑿|𝑀 =

momentum, 𝜽)), such that Bayesian model comparison favors simpler models as long as they can explain 
the data equally well. For example, for SWR 35, marginalizing over the decay parameter results in a model 
evidence for the momentum model that is lower than that for the diffusion model.   
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