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Visual motion perception as online
hierarchical inference

Johannes Bill 1,2 , Samuel J. Gershman 2,3,4,5 & Jan Drugowitsch 1,3,5

Identifying the structure of motion relations in the environment is critical for
navigation, tracking, prediction, and pursuit. Yet, little is known about the
mental and neural computations that allow the visual system to infer this
structure online from a volatile stream of visual information. We propose
online hierarchical Bayesian inference as a principled solution for how the
brain might solve this complex perceptual task. We derive an online
Expectation-Maximization algorithm that explains human percepts qualita-
tively and quantitatively for a diverse set of stimuli, covering classical psy-
chophysics experiments, ambiguous motion scenes, and illusory motion
displays. We thereby identify normative explanations for the origin of human
motion structure perception and make testable predictions for future psy-
chophysics experiments. The proposed online hierarchical inference model
furthermore affords a neural network implementationwhich shares properties
with motion-sensitive cortical areas and motivates targeted experiments to
reveal the neural representations of latent structure.

Efficient behavior requires identification of structure in a continuous
stream of volatile and often ambiguous visual information. To identify
this structure, the brain exploits statistical relations in velocities of
observable features, such as the coherent motion of features com-
posing an object (Fig. 1a). Motion structure thus carries essential
information about the spatial and temporal evolution of the environ-
ment, and aids behaviors such as navigation, tracking, prediction, and
pursuit1–8. It remains, however, unclear how the visual system identifies
a scene’s underlying motion structure and exploits it to turn noisy,
unstructured, sensory impressions into meaningful motion percepts.

In recent years, Bayesian inference has provided a successful
normative perspective on many aspects of visual motion
perception9–17. Human perception of motion stimuli spatially con-
strained by an aperture is well-explained by Bayesian statistical
inference9–11,14, and neural circuits that integrate local retinal input into
neural representations of motion have been identified18–23. For the
perception of structured motion spanning multiple objects and larger
areas of the visual field, however, a comprehensive understanding is
only beginning to emerge15,24–27. While common fate, that is, the use of
motion coherence for grouping visual features into percepts of rigid

objects, received some experimental support24,28, the perception of
natural scenes requires more flexible structure representations (e.g.,
nested motion relations and non-rigid deformations) than common
fate alone. Recent theoretical work15 has introduced a representation
of tree structures for the mental organization of observed velocities
into nested hierarchies. Theory-driven experiments subsequently
demonstrated that the human visual system indeed makes use of
hierarchical structure when solving visual tasks16, and that salient
aspects of human motion structure perception can be explained by
normativemodels of Bayesian inferenceover tree structures17. Because
these studieswere restricted tomodelingmotion integration onlywith
regard to the perceptual outcome—they analyzed presented visual
scenes offline using ideal Bayesian observer models—it remained
unclear how the visual system solves the chicken-and-egg problem of
parsing (in real time) instantaneous motion in a scene while simulta-
neously inferring the scene’s underlying structure.

We address this question by formulating visualmotionperception
as online hierarchical inference in a generative model of structured
motion. The resulting continuous-timemodel is able to explain human
perception of motion stimuli covering classical psychophysics
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experiments, ambiguous motion scenes, and illusory motion displays.
The model, which relies on online Expectation-Maximization29–31,
separates inferenceof instantaneousmotion from identifying a scene’s
underlying structure by exploiting the fact that these evolve on dif-
ferent time-scales. The resulting set of interconnected differential
equations decomposes a scene’s velocities with the goal ofminimizing
prediction errors for subsequent observations. Beyond capturing
human percepts inmany psychophysics experiments qualitatively, the
model explains human motion structure classification quantitatively
with higher fidelity than a previous ideal observer-based model17.
Furthermore, the model provides a normative explanation for the
putative origin of human illusory motion perception, and yields tes-
table predictions for future psychophysics experiments.

Finally, we address how motion structure discovery could be
supported by neural circuits in the brain. Studying the neural repre-
sentations underlying motion structure perception is challenging, as
the perceived structure often has no direct physical counterpart in the
environment (e.g., the concept of aflockvelocity in Fig. 1a).Wederive a
recurrent neural network model that not only implements the pro-
posed online hierarchical inferencemodel, but sharesmany properties
with motion-sensitive middle temporal area (MT)21 and dorsal medial
superior temporal area (MSTd)19,32. The network model in turn allows
us to propose a class of stimuli for neuroscientific experiments that
make concrete predictions for neural recordings.

Results
In what follows, we first present the online model for simultaneous
hierarchical inference of instantaneous motion and of the scene’s
underlying structure. Next, we demonstrate the model’s ability to

explain human motion perception across a set of psychophysics
experiments and discuss testable predictions for future studies.
Finally, we propose a biologically realistic neural implementation of
online hierarchical inference and identify targeted experiments to
reveal neural representations of latent structure.

Online hierarchical inference in a generative model of struc-
tured motion
A structural understanding of the scene in Fig. 1a requires the observer
to decompose observed velocities of objects or their features into
what we call latent motion sources, s, that, together, compose the
scene (Fig. 1b). These latent sources might or might not have a direct
counterpart in the physical world. In Fig. 1b, for instance, each bird’s
velocity on the observer’s retina can be decomposed into the obser-
ver’s self-motion, sself, the flock’smotion, sshared, plus a smaller, animal-
specific component, sind. Here, flock motion is an abstract mental
concept that is introduced to organize perception, but doesn’t have an
immediate physical correlate. A correct decomposition leads to
motion sources that aid interpretation of the visual scene, and thus
supports behaviors such as navigation, tracking, prediction and pur-
suit. Such decomposition requires knowledge of the scene’s structure,
like the presence of a flock and which birds it encompasses (Fig. 1c).
Wrong structural assumptionsmight lead to faulty inferenceofmotion
sources, like wrongly attributing the flock’s motion in the sky to self-
motion. Thus, the challenge for an observer is to simultaneously infer
motion sources and structure online from a stream of noisy and
ambiguous visual information.

We formalized the intuition of structured motion in the gen-
erative model shown in Fig. 1d–g. The stochastic model, first
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Fig. 1 | Visual motion perception as an online hierarchical inference task.
a Scene with nested motion relations. Observed velocities reaching the observer’s
retina are perceived as a combination of self-motion, flock motion and every bird’s
individualmotion relative to theflock.b Formal decomposition of the scene’smotion
into latentmotion sources. c Tree-structured graph representation of the underlying
motion structure with nodes corresponding to latent motion sources. Self-motion
contributes in the opposite direction to retinal velocity (−1). Vertical distances
between nodes, termedmotion strengths, λ, describe the long-term average speed of
the source. Vanishing motion strength indicates that the corresponding motion
source is not present the scene.d–gGenerativemodel of structuredmotion.dGraph
for a simpler motion scene with three flocking birds and a stationary observer.

e Latent motion sources follow independent Ornstein–Uhlenbeck processes. f The
component matrix, C, composes noise-free velocities from the motion sources, such
that each velocity is the sum of all its ancestral sources. g Observed velocities are
noisy versionsof thenoise-free velocities.h Inverting thegenerativemodel according
to Bayes’ rule poses an online hierarchical inference task characterized by inter-
dependent updates of motion sources and structure. i Using an adiabatic approx-
imation, the motion sources’ posterior variances reduce to a function of the motion
strengths. Panels a–h are derived from artwork by Vladimír Čerešňák ("Migrating
geese in the spring andautumn” licensed fromDepositphotos Inc.) andGordonDylan
Johnson ("VintageBrotherAndSisterBicycle Silhouette” fromOpenclipart.org, public
domain).
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introduced in ref. 16 and formally defined in Supplementary Note 1,
accommodates fundamental principles of physics (isotropy and iner-
tia) and psychophysics (continuity of trajectories33 and slow-velocity
priors9), without making assumptions on specific object trajectories.
For example, themotion of three flocking birds viewed by a stationary
observer (motion tree in Fig. 1d) can be decomposed into four inde-
pendent motion sources—one shared (magenta) and three individual
(green, one per bird)—that evolve according to Ornstein–Uhlenbeck
processes34, generating smooth motion with changes typically occur-
ring at time scale τs (Fig. 1e). The resulting speed (absolute velocity)
distribution of each motion source is governed by an associated
motion strength, λ, such that the expected speed is proportional to λ.
The observable velocities, vt, are in turn noise-perturbed (noise mag-
nitude σobs; Fig. 1g) sums of the individualmotion sources (collected in
vector st), with the contribution of each individual motion source
specified by a different columnof the componentmatrixC (see Fig. 1f).
This formalizes the intuition that observable velocities are the sum of
their ancestral motion sources in the tree.

In thismodel, the structure of a scene is fully characterized by the
vector of motion strengths, λ = (λ1, . . , λm, . . , λM), which describe the
presence (λm > 0) or absence (λm =0) ofmotion components, as well as
their typical speed. In other words, given a reservoir of components,C,
which might have been learned to occur in visual scenes in general,
knowing λ is equivalent to knowing the motion structure of the scene.
Inferring this structure in turn becomes equivalent to inferring the
corresponding motion strengths.

An agent faces two challenges when performing inference in this
generative model (Fig. 1h). First, inference needs to be performed on
the fly (i.e., online) while sensory information arrives as an ongoing
streamofnoisy velocity observations. Second, howobservedmotion is
separated into latent motion sources, s, and motion structure, λ, is
inherently ambiguous, such that inference needs to resolve the hier-
archical inter-dependence between these two factors.We addressboth
challenges by recognizing that motion structure, λ, typically changes
more slowly than the often volatile values of motion sources, s, facil-
itating the use of an online Expectation-Maximization (EM) algorithm
to infer both. This separation of time scales yields a systemofmutually
dependent equations for updating λ and s and furthermore affords a
memory-efficient, continuous-time online formulation that is amen-
able to a neural implementation (see Methods for an outline of the
derivation, and Supplementary Note 2 for the full derivation). While
the algorithm is approximate, it nonetheless performs adequate online
hierarchical inference and closely resembles more accurate solutions,
even for deeply nested motion structures (see Supplementary Fig. 1).

Our online model computes, at any time, a posterior belief over
the latent motion sources, st, which is Gaussian with mean vector μt

and covariance matrix Σt, as well as an estimate, λt, of the underlying
structure. The dynamics of μt, Σt, and λ2t (the inference is more ele-
gantly formulated on the squared values) read:

∂tλ
2
t = � 1

τλ
λ2t +α � μ2

t + f Σðλ2t Þ
� �

+β, ð1Þ

∂tμt = � 1
τs

μt + f Σðλ2t Þ � CT ϵt with ϵt =
vt
σ2
obs

� C μt

σ2
obs

, ð2Þ

and Σt =diag f Σðλ2t Þ
h i

: ð3Þ

The coupled Eqs. (1)–(3) support the following intuition. Equation
(1) calculates a running average of the motion strengths λ2t by use of a
low-pass filter with time scale τλ. Here,⊙ denotes element-wise multi-
plication and the function f Σðλ2t Þ (Fig. 1i) estimates the variance of the
s-posterior distribution according to an adiabatic approximation (cf.
Eq. (3), see Methods). The constants α and β contribute a sparsity-

promoting prior, p(λ2), for typical values of the motion strengths (see
Methods for their full expressions). By Eq. (2), the motion source
means μt are estimated by a slightly different low-pass filter that relies
on a prediction error, ϵt, between themodel’s expected velocities,Cμt,
and those actually encountered in the input, vt (both normalized by
observation noise variance to facilitate the later network imple-
mentation). This prediction error on observable velocities is trans-
formed back to the space of latent motion sources via the transposed
component matrix CT and then, importantly, gated by element-wise
multiplication (⊙) with the variance estimates f Σðλ2t Þ. This gating
implements a credit assignment as to which motion source was the
likely cause of observed mismatches in ϵt, and thus uses the scene’s
currently inferred motion structure to modulate the observed velo-
cities’ decomposition into motion sources. For flocking birds, for
example, a simultaneous alignment in multiple birds’ velocities would
only be attributed to the shared flock velocity if such a flock had been
detected in thepast (λshared large, and λind small). Otherwise it would be
assigned to the birds’ individual motions, sind.

Together, Eqs. (1) and (2) implement a coupled process of struc-
ture discovery and motion decomposition, which distinguishes them
through different time-scales. Notably, the proposed model is not a
heuristic, but is derived directly from a normative theory of online
hierarchical inference. Next, we explored if the model can explain
prominent phenomena of human visual motion perception.

Online inference replicates human perception of classical
motion displays
To explore if the proposed online model can qualitatively replicate
human perception of established motion displays, we simulated two
classical experiments from Gunnar Johansson25 and Karl Duncker35.
These experiments belong to a class of visual stimuli which we refer to
as object-indexed experiments (Fig. 2a) because the observed velo-
cities, vt, belong to objects irrespective of their spatial locations. (A
second class, which we refer to as location-indexed experiments, will
be discussed below.)

In Johansson’s experiment, three dots oscillate about the screen
with two of the dots moving horizontally and the third dot moving
diagonally between them (see Fig. 2b and Supplementary Movie 1).
Humans perceive this stimulus as a shared horizontal oscillation of all
three dots, plus a nested vertical oscillation of the central dot. Similar
to previous offline algorithms15, our online model identifies the pre-
sence of two motion components (Fig. 2c): a strong shared motion
strength, λshared (magenta) and weaker individual motion, λind, for the
central dot (green). The individual strengths of the outer two dots
(light and dark green), in contrast, decay to zero. Mostmotion sources
within the structure are inferred to be small (dotted lines in Fig. 2d).
Only two sources feature pronounced oscillations: the x-direction of
the shared motion source, μshared, x, (magenta, solid line) and the
y-direction of the central dot’s individual source, μind, y, (green, solid
line), mirroring human perception. As observed velocities are noisy,
they introduce noise in the inferred values of μt, which fluctuate
around the smooth sine-functions of the original, noise-free stimulus.
As expected fromwell-calibrated Bayesian inference, themagnitude of
these fluctuations is correctly mirrored in the model’s uncertainty, as
illustrated by the posteriors’ standard deviation

ffiffiffiffiffiffiffiffiffiffi
f Σðλ2t Þ

p
(shaded areas

in Fig. 2d).
In the second experiment, known as the Duncker wheel, two dots

follow the motion of a rolling wheel, one marking the hub, the other
marking a point on the rim (Fig. 2e). The two dots describe an intricate
trajectory pattern (see Fig. 2f and Supplementary Movie 2), that,
despite its impoverished nature, creates the impression of a rolling
object for human observers, a percept that has been replicated by
offline algorithms15. Likewise, our online model identifies a shared
(magenta in Fig. 2g) plus one individual (dark green) component, and
decomposes the observed velocities into shared rightward motion
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plus rotationalmotion for the dot on the rim (see Fig. 2h). Notably, the
shared motion component is discovered before the revolving dot’s
individual motion, leading to a transient oscillation in the inferred
shared motion source, μshared (see light magenta trace in Fig. 2h) — an
onset effect that could be tested experimentally.

In summary, the online hierarchical inference model successfully
identified the structure underlying the motion displays, provided
Bayesian certainty estimates for the inferred motion, and replicated
human perception in these classical psychophysics experiments.

Online inference outperforms ideal observers in explaining
human structure perception
Having qualitatively replicatedmotion structure inference in common
motion displays, we next asked if our online model could quantita-
tively explain human motion structure perception. To address this
question, we reevaluated behavioral data from Yang et al.17, where
participants had to categorize the latent structure of short motion
displays (see Fig. 3a). Motion scenes followed one of four structures
(Fig. 3b) and were generated stochastically from the same generative
model underlying our hierarchical inference model. Owing to their
stochastic generation, scenes often were ambiguous with regard to
their latent structure, prompting distinct error patterns in human
responses (see confusion matrix in Fig. 3c). For instance, indepen-
dently moving dots were more frequently misclassified as clustered
motion (I-C element) than vice versa (C-I element), global motion was
highly recognizable, and nested hierarchical motion was more fre-
quently misperceived as clustered than as global.

To test if human responses arise fromnormative, Bayesianmotion
structure inference, Yang et al. modeled these responses in two steps
(blue branch in Fig. 3d): first, an offline Bayesian ideal observer, which
was provided with the trajectories of all objects within a trial, calcu-
lated the likelihood for each of the four structures. Then, these four
probabilities were fed into a choice model with a small set of
participant-specific fitting parameters (see Methods). This model

captured many aspects of human responses, including task perfor-
mance, typical error patterns, single-trial responses, and participant-
specific differences. Yet, the model arrived at these probabilities by
comparing the likelihoods of the full sequences for all four candidate
structures, and so had no notion of how a percept of structure could
emerge over the course of the trial.

Thus, we next asked if our online model, which gradually infers
the structure during the stimulus presentation, was better able to
account for the observed response pattern. As our model by design
inferred real-valuedmotion strengths λ rather thanonly discriminating
between the four structures used in the experiment, we added an
additional stage that turned the inferred motion strengths into a
likelihood for each of the four structures at trial end (red branch in
Fig. 3d, see Methods). To do so, we computed five hand-designed
features from the seven-dimensional vector λt (besides one global and
three individual strengths, there are three possible two-dot clusters),
and trained a multinomial logistic regression classifier on the features
to obtain likelihood values for each of the structures. The classifier was
trained on the true structures of the trials, and thus contained no
information about human responses. Finally, we fitted the same choice
model as Yang et al. to the participants’ responses.

The confusion matrix predicted by our model shows an excellent
agreement with human choices, both when averaged across partici-
pants (Fig. 3e), and on a per-participant basis (see Supplementary
Figs. 3 and 4). Indeed, our model beats the original computational
model in terms of response log-likelihoods for all of the 12 participants
(see Fig. 3f; p <0.001, two-sided paired Wilcoxon signed-rank test).
Furthermore, the online model overcomes the systematic under-
estimation of global motion (G-G matrix element) that previous, ideal
observer-based approaches suffered from16,17. Importantly, in our
model, any information connecting the stimulus to the eventual choice
is conveyed through themotion strengths, λt, as a bottleneck. The fact
that the online hierarchical inference-based approach describes
human responses better than the ideal observer-based model of Yang

Fig. 2 | Online hierarchical inference replicates human perception of classical
motion displays. a In object-indexed experiment designs, every observable velo-
city is bound to an object irrespective of its location. Many psychophysics studies
fall into this class of experiment design. b Johansson’s 3-dot motion display.
Humans perceive the stimulus as shared horizontal motion with the central dot
oscillating vertically between the outer dots. c The online model’s estimate of the
motion strengths, λt (a single motion strength is shared across both spatial
dimensions). The component matrix, C, is shown in the top-left as a legend for the
line colors. Circles next to the matrix show the assignment of the rows in C to the
dots in panel b. d The model’s posterior distribution over the motion sources, st,

during the gray-shaded period in panel c. Shown are the mean values, μt, as lines
along with the model’s estimated standard deviation (shaded, only for two com-
ponents for visual clarity). e The Duncker wheel resembles a rolling wheel of which
only the hub and one dot on the rim are visible. f Despite its minimalist trajectory
pattern, humans perceive a rolling wheel. g Inferred motion strengths, λt. The
model identifies sharedmotionplus an individual component for the revolving dot.
h Inferredmotion sources, μt, for the duration in panelg. Color gradients along the
lines indicate time (from low to high contrast). For visual clarity, μt has been
smoothedwith a 50ms box filter for plotting. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-022-34805-5

Nature Communications |         (2022) 13:7403 4



et al. indicates that ourmodel may sharemechanistic features with the
human perceptual apparatus.

Explaining motion illusions that rely on spatial receptive fields
In contrast to the object-indexed experiments discussed above,
another class of psychophysics experiments employs velocity stimuli
that remain at stationary locations (see Fig. 4a), typically in the form of
apertures of moving dots or drifting Gabors. This class, which we refer
to as location-indexed experiments, is furthermore popular in neu-
roscience as it keeps the stimulus’ local visual flowwithin an individual
neuron’s spatial receptive field throughout the trial21. We investigated
our model’s ability to explain illusory motion perception in two dif-
ferent types of location-indexed experiments: motion direction
repulsion in random-dot kinematograms (RDKs)36–41, see Fig. 4, and
noise-dependent motion integration of spatially distributed
stimuli42,43, see Fig. 5.

We modeled perception in these experiments by including a self-
motion component and added a vestibular input signal to the obser-
vables (see Fig. 4b, and cf. Fig. 1a–c). The vestibular input, which we
fixed to have zero mean plus observation noise, complemented the
visual input, which is ambiguous with regard to self-motion and

globally shared object motion and can induce illusory self-motion
("vection”)44–46. In turn,wemodel the subjectively perceived velocity of
objects, relative to the stationary environment, as the sum of all
inferred motion sources excluding self-motion (see Fig. 4c and
Methods).

In the RDK experiment, a participant fixates the center of an
aperture in which two groups of randomly positioned dots move lin-
early with opening angle γ (see Fig. 4d) and subsequently reports the
perceived opening angle. Motion direction repulsion occurs if the
perceived angle is systematically biased relative to the true
opening angle.

As previously reported, the repulsion bias can change from an
under-estimation of the opening angle for small angles to an over-
estimation for large angles (data from ref. 36 reprinted as black dots in
Fig. 4e). We replicated this effect by simulating two constant dot
velocities with opening angles that varied across trials. Our model
decomposed the stimulus into self-motion, shared motion and indi-
vidual (group) motion. Across opening angles, it featured a triphasic
psychometric function with angles smaller than ~40° being under-
estimated, angles between ~40° and ~110° being over-estimated, and
even larger angels being unbiased (purple curve in Fig. 4e). Thematch
with human biases arose without systematic tuning of simulation
parameters (the simulations presented in this manuscript were mostly
performed with a set of default parameters, see Methods). Inspecting
themodel’s inferredmotion components revealed that, for small γ, the
negative bias arose from integrating all dots into a single, coherent
motion component while disregarding individual dot motions (left
inset in Fig. 4e). Intermediate γ, in contrast, caused the shared com-
ponent to be correctly broken up into two individual components—
plus a small illusory self-motion component (right inset in Fig. 4e). This
self-motion, which is ignored in the perceived velocities, widened the
perceived opening angle between the two groups of dots. For even
larger γ, the illusory self-motion vanished yielding unbiased percepts.

For fixed opening angles, motion direction repulsion is further-
more modulated by relative contrast and speed difference between
the two motion components. Specifically, for an opening angle of
γ = 45°, Chen et al.37 have shown that increasing the contrast of one dot
group inflates the perceived opening angle—heremeasured relative to
horizontal to separate cause and effect—of the other, constant-
contrast group (Fig. 4f, left). We replicated this effect in simulations
that operationalized visual contrast as an (inverse) multiplicative fac-
tor on the observation noise variance, σ2

obs. For an opening angle of
γ = 45°, our model featured a positive and monotonically increasing
repulsion bias as the second group’s contrast increases (purple line in
Fig. 4f, right), similar towhat has been previously reported. For smaller
opening angles, in contrast, our model predicts an inversion of the
repulsion bias, which first decreases at low contrast and then increases
again for higher contrast (blue line in Fig. 4f, right)—a prediction that
remains to be tested. Increasing the speed of one motion component
for large opening angles also introduces a positive bias in the per-
ceived opening angle of the other component in human
participants36,38. We replicated this effect by increasing the second
group’s speed, which, for a γ = 90° opening angle, yielded a relatively
stable bias of ~5° across different motion speeds (dashed line in
Fig. 4g), in line with the aforementioned experimental data from
Braddick et al.36 and, for a γ = 60° opening angle (purple line in Fig. 4g),
qualitatively replicated the initial rise and then gradual decline in the
bias, as reported for this opening angle by Benton and Curran38. Fur-
thermore, our model predicts that the speed-dependent bias changes
to a biphasic curve for smaller opening angles (blue line), providing
another testable prediction.

Extending the basic MDR experiment from Fig. 4d, Takemura
et al.39 investigated how motion in a surrounding annulus affects the
perceived directions of inner RDKs, see sketch in the top left of Fig. 4h.
Two inner RDKs move to the left and right, respectively, while two

Fig. 3 | The model quantitatively explains human perception of nested and
ambiguous motion scenes. a Stochastic motion stimulus from Yang et al.17 con-
sisting of three dots rotating on a circle. b Each trial followed one of four motion
structures. If clusteredmotionwaspresent (CorH structure), any pair ofdots could
form the cluster. c Confusion matrix of human responses, averaged over all 12
participants. d Models for predicting human responses. Yang et al. employed a
Bayesian ideal observer as the basis for fitting a participant-specific choice model.
Ourmodel, in contrast, calculates the likelihood for each structure from themotion
strengths, λt, at trial end and then fits the same choice model as Yang et al. for
translating probabilities into human responses. e Confusion matrix of our model.
f Log-likelihood of human responses relative to chance level, for both models. The
analyses in panels e and f are leave-one-out cross-validated to prevent overfitting.
Source data are provided as a Source Data file.
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additional RDKs in the annulus move up and down, respectively. For
this stimulus human observers show no direction repulsion39. We
simulated this extended MDR experiment with our hierarchical infer-
ence model by extending the motion tree of Fig. 4b to include two
group components for the outer and inner RDKs, respectively, on the
third level, and four individual components (oneperRDK) as leaves, on
the forth level (cf. Supplementary Fig. 5). Across 200 simulated trials
(see Methods), the distribution of inner RDK directions perceived by
the model at trial end (see histogram in Fig. 4h) match the reported
unbiased perception of humans.

Our model was further able to replicate human perceptual biases
for various other combinations of dot motion in the inner and sur-
rounding RDKs explored by Takemura et al. (see Fig. 4i–l, and Sup-
plementary Fig. 5 for example trials). The percepts to all combinations
are qualitatively replicated by our model. When both surrounding
RDKsmove downward, as shown in Fig. 4i, the perceivedmotion of the
inner RDKs is slightly biased upward. The reason for the bias in the
model’s percept is a small illusory self-motion component in upward
direction which necessitates a slight diagonal upward tilt of the inner
RDKs’ individual motions for explaining their horizontal retinal velo-
cities. When modifying the stimulus such that the inner RDKs move
diagonally with a 90 degree opening angle (see Fig. 4j–l), human and
model percepts remain unbiased in the case of downward (Fig. 4j) and

bi-directional surrounding motion (Fig. 4k). In both cases, the direc-
tional contrast of the presented velocities obviates the illusory iden-
tification of self-motion, thereby implicating unbiased percepts of the
model. If, however, the surrounding RDKs move upwards, strong
direction repulsion on the inner dots was reported39 leading to their
perceived motion to become almost horizontal (Fig. 4l). In the model,
this effect originates from illusory downward self-motion arising from
the general alignment of the presented velocities. Overall, our hier-
archical inference model replicated biased and unbiased perception
across a variety of stimulus conditions.

Turning to noise-dependent motion integration of spatially dis-
tributed stimuli, we investigated a motion illusion by Lorenceau42

which has received little attention in the literature (see Fig. 5). Two
groups of dots oscillate in vertical and horizontal orientation,
respectively (see Fig. 5a and Supplementary Movie 3). Both groups
follow sine-waves with identical amplitude and frequency, but main-
tain a relative phase shift of π/2 that is consistent with an imaginary
global clockwise (CW) rotation (indicated by a gray arrow in Fig. 5a).
This stimulus can be considered to be location-indexed, as the small
oscillation amplitude of less than 1 degree of visual angle caused the
stimulus to conveniently fit into the receptive fields of individual
neurons of the human homolog of area MT47. Interestingly, the sti-
mulus’ percept changes once disturbances orthogonal to the axes of

Fig. 4 | Hierarchical inference explains motion illusions in location-indexed
experiments. a In location-indexed experiments, motion flow is presented at sta-
tionary spatial locations. b Considered latent motion components. Self-motion,
which affects all retinal velocities in the opposite direction (−1) integrates both
visual input and a vestibular signal (here: zero + noise). c Perceived object velo-
cities, relative to the environment, are the sum of all inferred motion components
excluding self-motion. d In motion direction repulsion experiments, two groups of
dots move at constant velocity with opening angle γ. e The direction in which
human perception of the opening angle is biased depends on the true opening
angle. Black dots: human data, reproduced from ref. 36, error bars denote S.E. of
themean across subjects; n = 3 subjects, 80 trials per angle and subject. Purple line:
model percept. Insets: the model’s inferred motion decomposition. f Varying the
contrast of one dot group modulates the biased percept of the angle of the other
group. Purple: model percept for γ = 45°, qualitatively matching data from ref. 37.
Blue: predicted inversion of the bias for smaller opening angles. g Same as panel
f, but for varying the speed of the second group. Purple: model percept for γ = 60°,

qualitatively matching data from ref. 38. Dashed blue: model percept for γ = 90°,
qualitativelymatching data from ref. 36. Solid blue: predicted biphasic function for
smaller opening angles. h–l Extended experiment from ref. 39which surrounds the
two central RDKs with additional RDKs in an annulus. The hierarchical inference
model replicates human perception in various conditions. h A surround with dots
moving vertically both up- and downwards ("bi-directional surround” in ref. 39,
indicated by orange arrows in the top-left sketch’s annulus) causes no repulsion in
the perceived directions of horizontally moving RDKs in the center (darker orange
arrows in the top-left sketch’s center). Our model replicates this perception as
shown in the histogram of 200 trial repetitions. i Coherentlymoving annulus RDKs
cause the perceived inner velocities to be biased away from the surround direction.
j For diagonallymoving inner RDKs, the same coherent downward surround has no
noticeable effect. k Neither does a bi-directional surround bias the percept of
diagonally moving inner RDKs. l An upward surround, in contrast, biases the per-
cept of the inner RDKs to close-to-horizontalmotion. Source data are provided as a
Source Data file.
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oscillation are added (called “motion noise” in ref. 42, see Fig. 5b).
Without motion noise, participants perceive transparent motion, that
is, thedotswithin either group are combined to a rigidlymovingobject
according to common fate, and both groups are perceived as moving
separately. Their movement, however, is not perceived as strictly
vertically and horizontally, but rather the stimulus induces an
impression of slight counter-clockwise (CCW) rotation, that is,
“opposite to veridical”42. With motion noise, in contrast, the percept
switches in twoways: all dots appear tomove coherently along a circle,
and the perceived direction of movement becomes CW. These per-
cepts are illustrated in Fig. 5b.

Applied to this stimulus, our model replicates the perceived
rotation direction reversal with increased motion noise, which we
simulated through an increase in the observation noise σ2

obs. Specifi-
cally, themodel’s perceived velocities for both groups of dots featured
a slight global CCW rotation on top of two generally separated groups
for the noise-free stimulus, and a single global CW rotation once
observation noise is increased (Fig. 5c). Inspecting themodel’s motion

decomposition provides a possible answer to how this flip in perceived
rotation emerges, which is illustrated in Fig. 5d by the example of the
horizontal group. On noise-free presentation, dot motion was
decomposed into clockwise rotating self-motion (golden arrow) plus a
horizontally elongated, yet slightly CCW rotating groupmotion (green
arrow), leading to the transparent CCW motion percept. Once obser-
vation noise increased, the inferred motion structure discarded the
separated groups in favor of a single global motion component
(magenta), leading to the percept of coherent CW rotation for all dots
(see Supplementary Fig. 6 for trajectories of the motion strengths and
sources under both conditions).

Object recognition and perceptual switching of nested
structure-from-motion displays
Motion relations do not only aid dynamic tasks, such as tracking and
prediction, but also provide essential cues for object recognition.
Structure-from-motion (SfM), the perception of 3D objects from 2D
visual displays, is well-studied in psychology48–54 and neuroscience55–58.
We asked whether our model can support SfM perception and repli-
cate the salient phenomenon of perceptual switching when presented
with ambiguous stimuli (see Fig. 6a). Furthermore, using themodel, we
identified SfM displays of nested objects which could inspire future
psychophysics experiments studying how structure interacts with
perceptual ambiguity.

Typical SfM displays, like the point cloud-cylinder in Fig. 6a and
Supplementary Movie 4, involve rotational motion in three dimen-
sions, contrasting with the translational motion in two dimensions
considered so far. Our generative model supports such 3D rotation in
location-indexed experiments: as illustrated in Fig. 6b, introducing a
rotational motion source, srot, which describes the cylinder’s angular
velocity around the y-axis, yields a linear dependence of the observed
retinal velocities on srot at every input location (dashed orange circles)
owing to the locations’ fixed coordinates. Thus, rotational motion is
supported naturally by the component matrix, C, (cf. Fig. 1e) and
integrates without any changes into our hierarchical inference model.

Ambiguous SfM displays, such as the considered frontal view of a
rotating cylinder, furthermore feature equivocal correspondences of
spatially overlapping inputs to the cylinder’s surface at the front and
back. Mentally assigning the overlapping left- and rightward retinal
velocities to their depth locations is key to forming a coherent percept
of the 3D object. To support such percepts in our model, we added a
basic assignment process: spatially overlapping velocities are assigned
to their depth location on the cylinder (front or back) such that the
assignment locally minimizes the model’s prediction error, ϵt, in Eq.
(2). Furthermore, this assignment is independently re-evaluated at
each input location with a uniform probability in time (see Methods).
We tested the model’s ability to perceive SfM by using a motion tree
with self-motion, rotational motion and individual motion (see Fig. 6c,
and Supplementary Fig. 7 for a control simulation with more motion
components). As shown in Fig. 6d, the model swiftly identifies rota-
tional motion across all input locations at a constant angular speed,
matching the human percept of a rotating cylinder. Subsequently, the
percept switches randomly and abruptly between CW and CCW rota-
tion, with inter-switch-intervals following a Gamma distribution (see
Fig. 6e). The resulting stochastically switching percepts with typical
durations of a few seconds match the reported bistable perception of
humans53,57.

To explore how more complex structures could interact with
SfM perception, we asked how our model interprets the rotation of
nested point-cloud cylinders (see Fig. 6f and Supplementary
Movie 4). Their rotation is easily identified by humans49, and fea-
tures a more complex structure than basic SfM displays that only
require a single rotational motion source. To present this stimulus
to the model, the extended graph in Fig. 6g features rotational
sources not only for the inner and outer cylinders (light and dark

Fig. 5 | Noise-dependent perceptual changes formotion integrationof spatially
distributed stimuli. a In the motion illusion from Lorenceau42, a vertically and a
horizontally oscillating group of dots maintain a 90°-phase shift consistent with
global clockwise rotation (indicated as gray arrow). b The noise-free stimulus
(left branch) evokes transparent motion with an additional counter-clockwise
rotating percept in human observers. Adding motion noise by disturbing dot
trajectories orthogonally to their group’s oscillation axis (right branch; modeled by
increased observation noise σ2

obs) flips the percept to a single coherent rotation of
all dots in clockwise direction. c The model’s perceived velocities in both stimulus
conditions (time = color gradient from low to high contrast; t ≤ 2 s in noise-free
condition; t ≤ 5 s in noisy condition). For visual clarity, perceived velocities have
been smoothed with a 200ms box filter for plotting. d Illustration of the model’s
inferred motion decomposition. For noise-free stimuli, clockwise rotating self-
motion is compensated by counter-clockwise rotating group motion (sketched
here for the horizontal group). Withmotion noise, only a single, clockwise rotating
shared motion component is inferred for all dots. Source data are provided as a
Source Data file.
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blue, respectively), but also the possibility of shared motion
(magenta) affecting both cylinders. Where both cylinders over-
lapped, the assignment now minimized the prediction error over 4
overlapping retinal velocities (24 possible combinations per loca-
tion), but remained otherwise unchanged. When both cylinders
rotated with the same angular velocity of 90°/s, the model inferred
a single shared rotational component (see Fig. 6h) leading to the
impression of rigid rotation in which perceptual switches occur
simultaneously for both cylinders. Identifying a structure with a
single component rather than separate rotations for both cylinders
is the result of the model’s preference of simple structures.
Increasing the angular velocity of the inner cylinder by 50% to
135 °/s (see Fig. 6i) did not change the model’s percept of a rigidly
shared rotation, but led to a slightly higher perceived speed of
rotation. Inspecting the inference process revealed that the
assignment process often assigned fast-moving dots of the inner
cylinder to the outer cylinder and, vice versa, slower moving outer
dots to the inner cylinder. This assignment yielded a sufficiently
coherent interpretation of all retinal velocities as originating from a
single rotation (within the bounds of perceptual acuity, σobs) for the
model to prefer the simpler structure. Finally, a display in which the
outer cylinder rotates faster than the inner cylinder (135 °/s and
90 °/s, respectively; see Fig. 6j) changed the model’s inferred
structure to perceiving different rotational speeds for both cylin-
ders. Yet, even though each cylinder had its distinct perceived
rotation, their rotational directions remained aligned and percep-
tual switches still occurred simultaneously, a perceptual linkage
known from related experiments54.

The nested SfM displays in Fig. 6f–j provide testable predictions
for future psychophysics studies (see Supplementary Movie 4 for a
video of all conditions). The model’s percepts across all conditions
matched the percept of the authors.

Experimental predictions from a biological network model of
hierarchical inference
Finally, we asked whether and how a biologically plausible neural
network could implement our online hierarchical inference model. To
this end, we devised a recurrent neural network model of rate-based
neurons. Naturally, such modeling attempt relies on many assump-
tions. Nonetheless, we were able to identify several experimentally
testable predictions that could help guide future neuroscientific
experiments.

Following Beck et al.59, we assumed that task-relevant variables
can be decoded linearly from neural activity ("linear population code”)
to support brain-internal readouts for further processing, actions and
decisionmaking. Furthermore, we employed a standardmodel for the
dynamics of firing rates, ri(t), and assumed that neurons can perform
linear and quadratic integration59–62:

τi ∂t ri = � ri + f iðwT
i r + r

T QðiÞ rÞ, ð4Þ

with time constant τi, activation function fi(⋅), weight vector wi and
matrix Q(i) for linear and quadratic integration, respectively. The rate
vector, r(t), here comprises all presynaptic firing rates, including both
input and recurrent populations.With these assumptions, wederived a
network model with the architecture shown in Fig. 7a, which imple-
ments the online model, given by Eq. (1)–(3), via its recurrent inter-
actions and supports linear readout of all task-relevant variables. That
is, for every task-relevant variable, x, there exists a vector,ax, such that
x =aT

x r (see Supplementary Note 4 for the derivation).
The network consists of three populations. The input population

(bottom in Fig. 7a) encodes the observed velocities, vt=σ
2
obs, and

observation precision, 1=σ2
obs, in a distributed code. While any code

that supports linear readout of these variables could serve as valid
neural input, we chose a specific model that, as shown below,

Fig. 6 | Object recognition and perceptual switching of nested structure-from-
motion (SfM) displays. a Cylindrical SfM stimulus. A random point cloud on the
surface of a rotating, transparent cylinder (left) supports two possible percepts
when viewed from the front without depth information (right). Humans perceive
the structured motion of this 2D projection as a rotating 3D cylinder, albeit with
bistable direction of the perceived rotation. b Top view illustration of how the
generative model supports rotational motion. The rotational motion source, srott ,
describes angular velocity about the vertical axis (srot > 0 for CCW rotation, by
definition). In location-indexed experiments, observed velocities, vt, at a (fixed)
location with angle φ and radius R are a linear function of the rotational motion
source. In the frontal view of SfM experiments, only the x-component,
vx = �R sinðφÞ srott , and the vertical y-component, vy =0, are visible. c Motion tree
and correspondence problem. The graph contains self-motion, rotational motion
of the entire cylinder, and individual motion for every location. For any x-y coor-
dinate, there exist two overlapping observed velocities which are ambiguous
regarding their depth position (front or back). We performed the assignment of
observations to their perceiveddepth (front or back) such that theprediction error,
ϵt, in Eq. (2) isminimized. d 3D percept and perceptual bistability. Like humans, the
model identifies rotation as the single motion component. The value of srott

switches randomly between CW and CCW rotation with constant angular speed.
e Distribution of perceptual switches. The distribution of duration-of-percepts
closely follows a Gamma distribution, as commonly reported in human psycho-
physics. f Extension of the SfM display adding a smaller point cloud-cylinder,
nested within the original cylinder. g Motion tree for the extended experiment.
Three rotational components are provided: shared rotation of both cylinders,
rotation of the outer cylinder, and rotation of the inner cylinder. The correspon-
dence problem now demands assigning 4 observations where both cylinders
overlap. h Perceived structure for identical angular speed of both cylinders. The
model infers a single shared rotational component. i Fast inner cylinder. When
increasing the angular speed of the inner cylinder by 50% (sketch on the left), the
inferred structure is unaffected (right): the cylinders are perceived as having the
sameangular velocity. j Fast outer cylinder. In contrast,when increasing the angular
speed of the outer cylinder by 50% (left), the cylinders’ speeds are perceived as
separated (right). For visual clarity, the trees in panels c and g show only 5 and 3
receptive field locations for the outer and inner cylinder, respectively, while for the
simulations, we used 7 and 5 locations. Source data are provided as a Source
Data file.
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captures many properties of motion-sensitive area MT. The dis-
tributed population (center in Fig. 7a) simultaneously represents the
squaredmotion strengths, λ2t , mean of the sources,μt, and prediction
errors, ϵt, in a distributed code with linear readout. For those, almost
arbitrary readouts suffice, such that we chose randomly generated
readout vectors, a. Notably, we propose the prediction errors, ϵt, to
be linearly decodable, which allowed Eq. (2) to be implemented with
the neuron model in Eq. (4) (see Supplementary Note 4, Sections 3
and 4). All neurons in the distributed population have simple acti-
vation functions, fi( ⋅ ), that are linear around some baseline activity.
The linear decodability of λ2t , μt, and ϵt are testable predictions.
Finally, the 1-to-1 population (top in Fig. 7a) represents the uncer-
tainty, Σ = fΣ(λ2), in a one-to-one mapping, rm / f Σðλ2mÞ, with rm being
the firing rate of either a single cell or, more likely, a small popula-
tion. The theoretical motivation behind this representation is two-
fold: on the one hand, the non-linear form of fΣ( ⋅ ) prevents a dis-
tributed, linearly decodable representation (see Supplementary
Note 4, Section 5); on the other hand, the particular shape of f Σðλ2mÞ,
shown in Fig. 1i, mirrors the typical activation function of Type-I

neurons63, such that the proposed representation emerges naturally
for the activation function, f ΣðaT

λ2m
rÞ, in the 1-to-1 population (using

the fact that λ2m can be read out neurally with weights w=aλ2m
).

Overall, the network structure predicts λ2t , μt, and ϵt to be linearly
decodable, and the components of fΣ to be independently encoded
in single neurons or small neural populations.

Even though the network model supports both the object-
indexed and location-indexed experiments from Figs. 2–6, the reti-
notopic organization of the early visual system21,64 brings a location-
indexed perspective closer in line with our understanding of how the
cortex encodes visual information. Furthermore, as we show in Sup-
plementary Note 1, Section 5, our model can be extended to support
motion sources in polar coordinates (see Fig. 7b), such that it supports
salient real-world retinal input motifs, such as rotation and radial
expansion/contraction about the fovea. (Note that rotation and
expansion on the retina are conceptually distinct from the cylindrical
rotation, srot, in structure-from-motion, discussed earlier.) Repre-
sentations of angular motion, sφ, and radialmotion, sr, can also coexist
with translational motion (i.e., linear motion in Cartesian coordinates)

Fig. 7 | Hierarchical inference can be performed by a biologically realistic
network model. a Network model implementing the online hierarchical inference
model. Linear and quadratic interactions are indicated by direct arrows and Quad
boxes, respectively. In parentheses, the variables represented by each population.
b Rotational stimulus in a location-indexed experiment. Besides translational
(Cartesian) motion, the model also supports rotational, sφ, and radial motion, sr.
c Tuning centers in amodel of areaMT. A local population of neurons, which share
the spatial receptive field highlighted in panel b, cover all directions and speeds
with their velocity tuning centers. d Response function for the neuron highlighted
in panel c. The neuron responds strongly to local velocities into the upper-right
direction with a speed of ~5°/sec. Max. rate = 29.5 spikes/s. eMotion structure used
for the network simulation in panels f–j, including simultaneous translational,
rotational and radial motion sources. f Illustration of the stimulus. After 1s of
counter-clockwise rotation around the fixation cross, the rotation switches to
clockwise. At t = 2 s, rightward translation is superimposed on the rotation.
gMotion sources inferred by the network (solid lines: distributed population read-
out; dotted lines: solution by the onlinemodel given by Eqs. (1)–(3)). Shown isμt for

translational, rotational, radial and individual motion. Only 4 individual compo-
nents (2 x- and 2 y-directions) are shown for visual clarity. h Firing rates of the 1-to-1
population. Rates are in arbitrary units (a.u.) because the theory supports scaling of
firing rates with arbitrary factors. i Same as panel h, but for a random subset of 25
neurons of thedistributedpopulation. j Sameaspanelh, but for a randomsubset of
40 neurons of the input population, and smoothed with a 50ms box filter for
plotting. k Stimulus of a proposed neuroscience experiment. Velocities in dis-
tributed apertures follow the generativemodel fromFig. 1 using sharedmotion and
individual motion. l Different trials feature different relative strengths of shared
and individual motion, ranging from close-to-independent motion (left) to highly
correlated motion (right).m Linear readout of the fraction of shared motion from
neural activity. Seven different fractions of shared motion were presented (x-axis;
noise in x-direction added for plotting, only). A linear regressionmodel was trained
on the outermost conditions (blue dots). Intermediate conditions were decoded
from the network using the trained readout (red dots). Only a subset of
7 × 500= 3500 points is shown for visual clarity. Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-022-34805-5

Nature Communications |         (2022) 13:7403 9



within the same population. Selective neural response to rotation,
expansion/contraction and translation, as well as combinations
thereof, such as spiraling, has been frequently reported in the dorsal
medial superior temporal area (MSTd)19,65.

Before demonstrating this capability in simulations, let us provide
further information about the model’s input population, and how it
relates to known properties of area MT. To do so, consider the
location-indexed stimulus in Fig. 7b. During fixation, each aperture
stimulates a population in retinotopically organized, motion sensitive
area MT21. Neurons in MT are tuned to respond preferentially to a
certain direction and speed (Fig. 7c), such that the full population
jointly covers all velocities in a polar grid66,67. The response of indivi-
dual neurons to velocities within their spatial receptive field is com-
monly modeled by a log-normal function for speed67 and a von Mises
function for direction68, leading to the bump-like response function
shown in Fig. 7d. As a third factor, higher visual contrast (smaller σ2

obs)
leads to higher firing rates69. As we derive in Supplementary Note 4,
Section 6, a neural population with these response functions supports
linear readout of input velocities, vt=σ

2
obs, and precision, 1=σ2

obs, in
Cartesian coordinates. This provided us with a biologically realistic
and, at the same time, theoretically grounded input populationmodel
which we used in the following network simulations.

We tested the network’s ability to perform online hierarchical
inference in the simulation shown in Fig. 7e–j. To challenge the net-
work, we employed a stimulus that combined shared rotation and
shared translation (motion tree in Fig. 7e). Six input populations with
receptive fields shown in Fig. 7f projected to a distributed population
of 100 neurons and a 1-to-1 population of size 8 (one per motion
strength). After one second of retinal velocities of counter-clockwise
rotation (Fig. 7f, left), these velocities switched to clockwise rotation
(center), followed by a superposition of clockwise rotation and right-
ward translation (right). As the network response for the three popu-
lations to this stimulus shows (Fig. 7h–j), input neurons fired sparsely
and were only active if the stimulus matched their preferred direction
or speed. Neurons in the distributed population, in contrast, showed
fluctuating activity with little apparent structure, and exhibited
population-wide transients upon changes of the input. Finally, the 1-to-
1 population responded more graded and with a short delay, sug-
gesting that every rate, rm, describes a small cortical population rather
than individual neurons. Knowledge of the (randomly drawn) vectors,
ax, of the simulated network, allowed us to read out the network’s
latent motion decomposition at each time point (solid lines in Fig. 7g).
This revealed that the network correctly decomposed the input,
including the overlaid rotational and translational motion, and closely
matched the online model (dotted lines).

In experiments with humans and animals, we have no access to
these readout vectors, ax. We therefore simulated a possible experi-
ment that tests our model and doesn’t require this knowledge (see
Fig. 7k–m), while benefiting from precise stimulus control. Several
apertures, located at the receptive fields of recorded neurons in
motion sensitive areas (e.g., area MT or MSTd), present a motion sti-
mulus according to the generative model from Fig. 1. Velocities across
the apertures are positively correlated owing to a shared motion
source, but also maintain some individual motion (see Fig. 7k and
Supplementary Movie 5). A series of trials varies the fraction of shared
motion in the stimulus, q≔ λ2shared=ðλ2shared + λ2indÞ, ranging from almost
independent motion (Fig. 7l, left) to almost perfect correlation (right).
According to the network model, λ2 can be read out linearly. For the
simulation in Fig. 7m, we presented the network with trials of seven
values of q.We then trained a linear regressionmodel to predict q from
the neural activity for the two most extreme structures (blue dots in
Fig. 7m), and decoded q for the intermediate structures using this
regression model (red dots in Fig. 7m). Owing to the stochastic sti-
mulus generation, the network’s motion structure estimates, λt, fluc-
tuate around the true strength—yet, on average, the trained linear

readout correctly identified the fraction of global motion in the sti-
mulus. This is a strong prediction of the network model, which could
be tested in a targeted neuroscientific experiment.

Discussion
We have proposed a comprehensive theory of online hierarchical
inference for structured visual motion perception. The derived
continuous-time model decomposes an incoming stream of retinal
velocities into latent motion components which in turn are organized
in a nested, tree-like structure. A scene’s inferred structure provides
the visual system with a temporally robust scaffold to organize its
percepts and to resolve momentary ambiguities in the input stream.
Applying the theory to human visualmotion perception, we replicated
diverse phenomena from psychophysics in both object-indexed and
location-indexed experiment designs. Furthermore, inspection of the
model’s internal variables provided normative explanations for puta-
tive origins of human percepts and spawned concrete predictions for
psychophysics experiments. Finally, the online inference model
afforded a recurrent neural network model with visual inputs remi-
niscent of cortical area MT and latent structure representations remi-
niscent of area MSTd.

Our online model shares features with predictive coding70,71, a
theory positing that “higher” brain areas provide expectations to ear-
lier areas in a hierarchical model of sensory input and that neural
processing aims to minimize prediction errors between top-down
expectations and bottom-up observations. Like predictive coding, the
dynamics in Eq. (2) update the values of motion sources to minimize
prediction errors, ϵt, within the bounds imposed by the identified
structure. Yet, structure identification according to Eq. (1) follows a
different principle by computing a running average of motion source
magnitudes. This contrastswith common theories ofpredictive coding
in the brain72,73, which assume that the same computational principle is
repeated across cortical hierarchies, and demonstrates how hier-
archical visual processing could combine multiple interacting algo-
rithmic motifs. Moreover, the network model in Fig. 7a challenges the
prevalent view72,74 that error signals are necessarily represented by
distinct neural populations (or alternatively distinct dendritic
compartments75). While our networkmodel supports the possibility of
distinct error populations, we show that prediction errors could also
be computed and conveyed by the same neurons representing other
quantities, such as the motion sources, μt, and even the structure, λ2t ,
using a distributed neural code.

In the main text, we have for the sake of clarity limited the pre-
sentation of the theory to a basic version that nonetheless covers all
essential concepts. In Supplementary Note 3, we present several
extensions that are naturally covered by our model:
(i) observation noise, σobs, canbe time- and object-dependent, which

is relevant for modeling temporary occlusion of a subset of
stimuli;

(ii) observation noise can be non-isotropic (different values in x- and
y-direction),which is relevant for angle-dependent edge velocities
in apertures76;

(iii) for optimal inference, different motion components can feature
different time constants, since velocity is expected to change
more slowly for heavy objects due to higher inertia;

(iv) different motion components may tend to co-occur or exclude
one another in real-world scenes, which can be modeled by an
interaction prior of pairwise component compatibility; and

(v) when motion components are not present for a long time, they
will decay to zero, preventing their rediscovery, which can be
mitigated by a prior on motion strengths.

The current theory is limited to velocities as input, thereby
ignoring the well-documented influence of spatial arrangement on
visual motion perception, such as center-surroundmodulation77,78,
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adjacency26 or motion assimilation79, as well as Gestalt
properties80. Furthermore, the model does not solve the corre-
spondence problem in object-indexed experiments, but simply
assumes that velocities are correctly assigned to the input vector
as objects move about the visual field. For location-indexed
experiments, we have explored how structure inference in con-
cert with a basic assignment process, which minimizes the obser-
ver’s local prediction errors, could solve the correspondence
problem during structure-from-motion perception. Our work
focuses on the simultaneous inference of motion sources, st, and
motion strengths, λt. Other quantities, such as time constants and,
probably more importantly, the motion components, C, have been
assumed to be given. It is worth noting, however, that gradient-
based learning of C is, in principle, supported by the theory on
long time scales (see Supplementary Note 3, Section 5). Finally,
limited experimental evidence of the neural correlates of motion
structure perception required the neural network model to rely on
many modeling assumptions. The model’s predictions should act
as a starting point for further scientific inquiry of these neural
correlates.

Even though the sensory processes underlying object-indexed
motion perception necessarily differ from those of location-indexed
perception, our model describes human perception for both types of
experiments. Thus, both typesmight share the sameunderlying neural
mechanisms for structure inference. This raises the intriguing question
whether there exist stable, object-bound neural representations of
velocity. Furthermore, our work points towards a tight link between
neural representations of latent structure and representations of
uncertainty in that the estimated motion strengths, λt, determine the
credit assignment of prediction errors through the gating function,
f Σðλ2t Þ—a function that also computes the variance of motion compo-
nents, e.g., the brain’s uncertainty about flock velocity. Behaviorally,
sensory noise directly impacts the perceived structure of a scene as
demonstrated experimentally by the perceptual reversal in the
Lorenceau-motion illusion42 (cf. Fig. 5). More generally, our theory
predicts that the visual system will organize its percepts into simpler
structures when sensory reliability decreases. Moreover, the reliability
of visual cues plays a role in multisensory integration81, with area
MSTd82,83, but not area MT84, exhibiting tuning to vestibular signals.
Thus, MSTd may be a candidate area for multisensory motion struc-
ture inference. Overall, we expect our theoretical results to guide
targeted experiments in order to understand structured visual motion
perception under a normative account of statistical information
processing.

Methods
In what follows, we provide an overview of the generative model, the
online hierarchical inference model, the computer simulations, and
the data analysis. A more detailed presentation is found in the Sup-
plementary Information.

Generative model of structured motion
We consider K observable velocities, vk,d(t), in D spatial dimensions.
For notational clarity, we will consider in this Methods section only
the case D = 1 and use the vector notation, vt = ðv1ðtÞ,::, vK ðtÞÞT. The
extension to D > 1 is covered in Supplementary Note 1, Section 4.
Observable velocities, vt, are generated byM latent motion sources,
sm,d(t), abbreviated (for D = 1) by the vector st = ðs1ðtÞ,::, sM ðtÞÞT.
Velocities are noisy instantiations of their combined ancestral
motion sources, vt ∼N C st , σ

2
obs=δt I

� �
, where Ckm = +1, −1, and 0 in

K ×M component matrix, C, denote positive, negative and absent
influence, respectively. For the formal definition, observations, vt,
remain stable within a short time interval [t, t + δt), and the obser-
vation noise variance, σ2

obs=δt, ensures a δt-independent informa-
tion content of the input stream. In the online inference model,

below, we will draw the continuous-time limit, which will become
independent of δt. In computer simulations, δt is the inverse frame
rate of the motion display (default value: 1/δt = 60 Hz). Each motion
source (in each spatial dimension) follows an Ornstein–Uhlenbeck
process, dsm = −sm/τs dt + λm dWm, with time constant τs, motion
strength λm (shared across dimensions), and Wiener process Wm.
The OU process’s equilibrium distribution, N 0, τs

2 λ
2
m

� �
, introduces

a slow-velocity prior which, as we note, has recently been proposed
to originate from the speed-contrast statistics of natural images85.
The resulting marginal stationary velocity distribution of vk
is vk ∼N 0, σ2

obs=δt +
τs
2

PM
m= 1 C

2
km λ2m

� �
.

Radial and rotational motion sources. In location-indexed experi-
ments, the input’s location (e.g., a neuron’s receptive field) remains
fixed. For D = 2, the fixed input locations enable our model to support
rotations and expansions around various axes. In this manuscript, we
consider two cases: rotation around a vertical axis (SfM experiment in
Fig. 6) and rotation/expansion around the fovea (network model
in Fig. 7).

For rotations around a vertical axis, each input vk has fixed polar
coordinates (Rk,φk) as sketched in Fig. 6b. When describing rotation
by means of a rotational motion source, srott , we obtain for the noise-
free part of the observed velocity in Cartesian coordinates:
vk,x = �Rk sinðφkÞ srott , vk,y =0, and vk,z = �Rk cosðφkÞ srott . Owing to
the linear dependence of vk on srot, we can include the coefficients as a
column in component matrix, C, and srot as a motion source in the
vector st. Note that in the SfM experiments only the x- and y-directions
are observed.

Similarly, for rotation/expansion around the fovea, each input
vk has fixed polar coordinates (Rk, ϑk) with radial distance Rk and
angle ϑk, relative to the pivot point (we use different symbols than
for vertical rotation for notational clarity). Denoting radial and
rotational motion sources by sr and sφ, we obtain for the noise-free
part of vk in Cartesian coordinates: vk,x = sr cos ϑk � sφ Rk sin ϑk , and
vk,y = sr sin ϑk + sφ Rk , cos ϑk . Since Rk and ϑk are fixed coefficients,
the mapping (sr, sφ)↦ (vk,x, vk,y) is linear and, thus, can be described
by the componentmatrix C. The full derivation and an illustration of
the velocity relations in polar coordinates are provided in Supple-
mentary Note 1, Section 5.

Online inference
The goal of motion structure inference is to simultaneously infer the
value of motion sources, st, and the underlying structure, λ, from
a stream of velocity observations. The number of spatial dimensions,
D, component matrix, C, time constant τs, and observation noise σobs
are assumed to be known. The EM algorithm leverages that changes in
st and λ (if changing at all) occur on different time scales, τs and τλ,
respectively. For τλ≫ τs, the EM algorithm treats λ as a constant for
inferring st (E-step), and optimizes an estimate, λt, online based on the
inferred motion sources (M-step).

E-Step. For fixed λ, the posterior p st ∣ v0:t ; λ
� �

is always a multivariate
normal distribution, N μt ,Σt

� �
, and can be calculated by a Kalman-

Bucy filter86,87; see Supplementary Note 2, Sections 1, 2, and 3.1 for the
derivation. This yields coupled differential equations for the time
evolution of μt and Σt. To reduce the computational complexity of the
system, we perform an adiabatic approximation on the posterior
covariance, Σt, by assuming (a) that it has always converged to its
stationary value, and (b) that off-diagonal values in Σt are zero, that is,
we ignore correlations in uncertainty about latent motion sources in
the posterior distribution. As shown in the full derivation in Supple-
mentary Note 2, Section 3, the first assumption is warranted because
the stationary value of Σt depends only on the current structure esti-
mate, λt; then, because Σtdecays to stationarity at time scale τs/2, it can
always follow any changes in λtwhich happen at time scale τλ≫ τs. The
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second assumption is a modeling assumption: that biological agents
might disregard the subtle (and complicated) interactions between the
uncertainties of different motion sources and rely on their individual
uncertainties, instead. Using the two assumptions we derive a closed-
form solution for the posterior variance,

Σmm =
σ2
obs

τs kcmk2
�1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

τs2 kcmk2
σ2
obs

λ2m

s !
= : f Σðλ2mÞ , ð5Þ

with kcmk2 =
PK

k = 1 C
2
km denoting the vector-norm of them-th column

of C. This is Eq. (3) of the main text. The plot in Fig. 1i has parameters
∥cm∥2 = 4, τs = 300ms, and σobs = 0.05. By plugging the adiabatic
approximation of the variance into the time evolution of μt, we arrive
at Eq. (2) of the main text (see Supplementary Note 2, Section 3.4 for
the derivation).

M-step. Using the posterior from the E-step, motion strengths, λ, are
optimized to maximize the likelihood of the observed velocities. This
optimization further incorporates prior distributions, pðλ2mÞ, most
conveniently formulated over the squaredmotion strengths, forwhich
we employ a scaled inverse chi-squared distribution,

pðλ2mÞ= Iχ
�
λ2m ; νm, κ

2
m

�
=

1

λð2 + νmÞm

exp � νmκ
2
m

2 λ2m
� A

�
νm, κ

2
m

�" #
, ð6Þ

owing to its conjugacy to estimating the variance of sm (this is what λ2m
controls). The prior features two hyper-parameters, νm and κ2

m, which
give rise to an intuitive interpretation as νm pseudo-observations of
average value κ2

m. The partition function, Aðνm, κ2
mÞ, only serves for

normalization. By default, we employ a Jeffreys prior (νm = κ2
m =0),

which is a typical choice as a non-informative prior in Bayesian
statistics and promotes a preference for finding simple structures by
assigning higher beliefs to small values of λm (and highest to λm =0).
Theonly exception is themotion strength assigned to selfmotion, λself,
for which we employ a uniform prior distribution, formally by setting
νself = − 2 and κ2

self = 0. These choices reflect the a-priori belief that
motion components supported by C will usually be absent or small in
any given scene—with the exception of self-motion-induced velocity
on the retina, which occurs with every saccade and every turn of the
agent’s head (see Supplementary Note 2, Section 1.2 for the formal
calculation of the M-step).

In the online formulation of EM (see Supplementary Note 2, Sec-
tions 2.3 and 3.4 for the derivation of the online EM algorithm and of
the online adiabatic inference algorithm which constitutes our model,
respectively), these priors give rise to the low-pass filtering dynamics

in Eq. (1) for updating λ2m, with constants

αm =
2

τs2 ð2 + νm + τλ=τsÞ
, and ð7Þ

βm =
νm κ2

m

τλ ð2 + νm + τλ=τsÞ
: ð8Þ

This completes the derivation of the onlinemodel forD = 1 spatial
dimensions. The extension to multiple dimensions is straightforward
and provided in Supplementary Note 2, Sections 1.3, 2.3 and 3.4
alongside the respective derivations.

Preference for simple structures. The above Jeffreys prior onmotion
strengths, pðλ2mÞ, facilitates the discovery of sparse structures. This
property is important when a large reservoir of possible motion
components in C is considered: the model will recruit only a small
number of components from the reservoir. In Supplementary Fig. 2, we
demonstrate this ability for the example of the Johansson experiment
from Fig. 2b–d by duplicating the shared motion component, i.e., the
first two columns in C are all 1’s. As Supplementary Fig. 2 shows, the
model recruits only one of the two identical components and discards
the other. This example of identical components in the reservoir
represents the theoretically hardest scenario for maintaining a sparse
structure.

Computer simulations
Computer simulations and data analysis were performed with custom
Python code (Python 3.8, Numpy 1.21, Scipy 1.7, scikit-learn 0.24,
Matplotlib 3.4, Pandas 1.3, xarray 0.19). The code has been published
on GitHub88 and supports most of the extensions presented in Sup-
plementary Note 3.

For the numerical simulation, input was drawn with observation
noise variance σ2

obs=δt, at the time points of input frames (every δt).
Thedrawn input remained stableuntil the next frame. Between frames,
the differential equations for online hierarchical inference were inte-
grated with SciPy’s explicit Runge-Kutta method RK45 which adapts
the step size. This integration method combines numerical accuracy
with a parameterization that is almost invariant to the input frame rate.
The default parameters that we used are listed in Table 1. The data
shown in the figures is provided in a supplementary source data file.

Hierarchical motion experiments (Fig. 2)
For the Johansson experiment, all K = 3 dots followed sinusoidal velo-
cities with frequency 0.5Hz. Horizontal amplitudes were 2

ffiffiffiffiffi
τs

p
for all

dots; vertical amplitudes were 0 for the outer dots and cosð45�Þ � 2 ffiffiffiffiffi
τs

p
for the inner dot. For the Duncker wheel, we set the wheel radius to
R = 1 and the rotation frequency to 1 Hz. This leads to the hub velocity

Table 1 | Default parameters of the computer simulations

Description Variable Object-indexed Location-indexed Network

Time const. motion sources τs 0.300 s 0.100 s 0.100 s

Time const. motion strengths τλ 1.000 s 0.333 s 0.333 s

Inv. observation frame rate δt 1/60 s 1/60 s 1/120 s

Observation noise σobs 0.05 0.017 = 0.05 ÷ 3 0.017

Initial motion strength λm(t = 0) 0.5 0.5 0.5

No. of pseudo observation νm 0 0/−1 0

Val. of pseudo observations κm 0 0 0

Vestibular input vvst – 0 –

Obs. noise for vestibular input σvst – 0.05 –

Time const. for pred. err. τϵ – – 0.050 s

Most parameters are maintained throughout all computer experiments. Deviations from these parameters are listed in the respective experiment description. The value νm = − 1 in location-indexed
experiments relates to self-motion. For D = 2 spatial dimensions, νself = − 2/D = − 1 yields a uniform prior distribution (see Supplementary Note 2, Section 1.3).
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vhub, y = 0 and vhub, x = 2π s−1 because the hub must travel 2πR during
one period for slip-free rolling. For the rim velocities, being the deri-
vatives of location, we thus find vrim,x = vhub,x +Rω cosðω tÞ and
vrim,y = �Rω sinðω tÞ, with ω = 2π s−1. For the simulation, we increased
the observation noise to σobs = 0.15 and set λm(t = 0) = 0.1 to highlight
the gradual discovery of the motion components.

Structure classification (Fig. 3)
The stimulus data and human responses were released by Yang et al.17

on GitHub. The experiment is described in detail in ref. 17. There were
12 participants with each participant performing 200 trials. Each trial
consisted of three dots moving on a circle for 4 s. Dots had different
colors to prevent their confusion, but colors did not convey any
information on the dots’ roles within the structure. No data was
excluded. Trials were generated stochastically from the same gen-
erative model that is considered in this work, with uniform probability
for each of the four structures (Independent, Global, Clustered, Hier-
archical) to underlie the trial. Motion strengths were chosen such that
all dots had identical marginal velocity distributions, p(vk), across all
structures—leaving motion relations as the only distinguishing infor-
mation (see ref. 17, for detailed stimulus parameters and λ-values of all
structures). Like Yang et al.17, we treated the experiment as one-
dimensional (D = 1), operating directly on the angular velocities. Noise-
free angular velocities were calculated from the circular distance of
subsequent stimulus frames, and we set 1/δt = 50Hz to match the
experiment’s frame rate.

For presenting the trials to our online inference model, we initi-
alized each of the λm at its average value (average taken across the
ground truth of all structures). At trial end, the model yielded M = 7-
dimensional λ-vectors associated with 1 shared component, 3 cluster
components (one per possible pair), and 3 individual components (see
Supplementary Fig. 3 for example trials). For logistic regression, we
calculated 5 features, Ti, from λ, namely:

T 1 = λ1=
P
m
λm Does sharedmotion standout?

T2 = maxfλ2, λ3, λ4g=
P

m= 2,3,4
λm Doesone cluster dominate the others?

T3 = maxfλ5, λ6, λ7g=
P

m= 5,6,7
λm Doesone individual component standout?

T4 = λ
2
c=

P
m= c, Ch1ðcÞ, Ch2ðcÞ

λ2m with c= argmaxðλ2, λ3, λ4Þ Does the strongest cluster dominate its children?

T5 = λ
2
c=

P
m= c,:ChðcÞ

λ2m with c= argmaxðλ2, λ3, λ4Þ Does the strongest cluster dominate the 3rddot?

ð9Þ

Here, Ch1,2(c) denote the individual motion components of the two
dots within the cluster component c, and ¬Ch(c) denotes the dot not
being in cluster c. The features were hand-designed based on the
reasoning that they may be useful for structure classification. Their
most important property is that all information about a trial is
conveyed through λ as a bottleneck. A multinomial logistic regression
classifier was trained with L1-regularization on the feature vectors,
(T1, . . , T5), to classify the ground truth structures of the trials. Then, we
fitted the same choice model as ref. 17 to the human choices, but
replaced the ideal observer log-probability, logp S ∣ v0:T

� �
, which was

used in ref. 17, with the class probability from the trained classifier,
logp S ∣ λð Þ:

Pðchoice = SÞ=πL
1
4
+ ð1� πLÞ exp β logp S ∣ λð Þ+ bS

� �� �
=Norm:, ð10Þ

with lapse probability, πL, inverse temperature, β, and biases, bS, for all
structures, S =G, C, H, relative to the independent structure (bI =0 by
convention). Note that, in contrast to ref. 17, we do not need to con-
sider structure multiplicities here because the features are already
symmetric with regard to the three possible cluster assignments.
Like ref. 17, we did not apply observation noise to the presented
velocities, but maintained a non-zero observation noise parameter,

σobs, for the inference. Observation noise, σobs, and lapse probability,
πL, were shared parameters for all participants and were fitted jointly
via a simple grid search. We obtained σobs = 0.04 and πL = 4%
(compared to 14% in ref. 17). The remaining 4 parameters, {β, bG, bC,
bH}, were fitted via maximum likelihood for each participant. All
reported confusion matrices and log-likelihoods were obtained by
fitting the 4 per-participant parameters using leave-one-out cross-
validation. The log-chance level in Fig. 3f is 200 � logð1=4Þ since each
participant performed 200 trials.

Location-indexed experiments (Figs. 4–6)
To support self-motion, we introduce a column of −1’s in C as an
additional component, which is connected to all visual velocity inputs
and to a vestibular input vvst. In our simulations, the vestibular input is
always stationary, but noisy: vvst ∼N 0,σ2

vst

� �
. The associated self-

motion strength, λself, uses a uniform prior (see discussion under
Eq. (6)). Perceived velocities are the sum over all-except-self-motion:
vperceived =∑m≠selfC *mμm.

Motion-direction-repulsion (MDR) experiments (Fig. 4)
In the MDR experiments with two RDKs, input was modeled as K = 3
velocities: two for the two groups of dots, plus the vestibular input.
Repulsion angleswere estimated from20 repetitions of 30 s long trials,
with vperceived averaged over the last 10 s of each trial. Error bars from
the simulations were too small to be shown in Fig. 4e–g.

In Fig. 4e, the velocities for opening angle, γ, were given by
ðvx , vyÞ= v0 � ðcosðγ=2Þ, sinðγ=2ÞÞ for the first group, with v0 = 2

ffiffiffiffiffi
τs

p
,

and v0 � ðcosðγ=2Þ, �sinðγ=2ÞÞ for the second group. As in Fig. 3 of ref.
36, the repulsion bias was measured with respect to the full
opening angle.

In Fig. 4f, increasing contrast of the second groupwasmodeled as
dividing the observation noise variance by a factor, f, between 0.001
and 10, leading to variance σ2

obs=f for this group’s input. As in ref. 37,
the repulsion bias was measured only with respect to the first group’s
perceived direction. The expressed similarity to experimental data
refers to the “2-motion condition” in Fig. 7 of ref. 37.

In Fig. 4g, the velocity of the second group was multiplied by a
factor between 0 and 2, and the repulsion bias was measured only
with respect to the first group’s perceived direction. For a 60°
opening angle, we qualitatively replicate the experimental data
from Fig. 2a, b in ref. 38. In order to maintain the simulation
parameters from previous conditions, we did not attempt to
quantitatively match the speed of targets and distractors in ref. 38.
A direct quantitative comparison to the human data from Fig. 4b in
ref. 36 is difficult because they had measured the point of sub-
jective equality (PSE) to a 90° opening angle for this stimulus
condition, finding a 10° bias for the full opening angle.

For the Takemura experiment39 in Fig. 4h–l, we used K = 5 inputs:
two inner RDKs, two outer RDKs, and the vestibular signal, which were
organized in the motion tree shown in Supplementary Fig. 5a. If not
mentioned otherwise, the simulation parameters matched those from
the basic MDR experiment in Fig. 4e. The inner stimuli had vx = ± v0,
and vy = v0 if non-zero. The outer stimuli had vx =0, and vy = ± v0. The
standard deviation of the observation noise of the outer RDKs was
divided by factor 6, reflecting that in ref. 39 the outer RDKs covered a
three-times larger area and had twice the dot density of the inner
RDKs. Each histogram is based on 200 trial repetitions, which use
identical initial conditions but different realizations of observation
noise, with perceived velocities measured at trial end. The conditions
in panels Fig. 4h–l correspond to figure panels 4a, 4b, 6 left, 6 center, 6
right, in ref. 39. Besides transparent motion (i.e., two perceived velo-
cities), Takemura et al. reported also coherent motion (i.e., only one
perceived velocity) for the inner RDKs in a fraction of trials. In our
computer simulations, we focused only on the biased perception of
two velocities.
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Lorenceau illusion (Fig. 5)
For the Lorenceau illusion, we modeled each dot’s velocity as a sepa-
rate input owing to the spatially distributed nature of the stimulus. As
in ref. 42, the two groups of 10 dots each oscillated at a frequency of
0.83Hz. For the oscillation amplitude, we chose R = 1/2 (arbitrary
units), leading to velocities vxðtÞ=Rω cosðω tÞ for thehorizontal group
and vyðtÞ= �Rω sinðω tÞ for the vertical group,withω = 2π ⋅0.83 s−1. As
shown in Supplementary Fig. 6, the model decomposes this stimulus
into a deeply nested structure comprising self-, shared-, group-, and
individual motion. For the noise-free stimulus condition, we used the
default simulation parameters. For the condition with motion noise,
the observation noise, σobs, of the visual inputs (not the vestibular
input) was multiplied by 25.

Structure-from-motion (SfM) experiments (Fig. 6)
We treat SfM as a location-indexed experiment owing to experimental
findings50,52. For computer simulations, we model each cylinder as a
ring in the x-z-plane, conflating its height into one receptive field (the
simulations still run in 2D with x- and y-dimensions being modeled).
The outer cylinder had radius R = 1.5, and the inner, if present, R = 1.0.
Normal rotation speed was 90°/s, and fast speed was 135°/s. Velocities
were observed at seven equidistant receptive field locations along the
x-axis, xRF∈ {1.2, 0.8, 0.4,…, −1.2}. These correspond to angles, φk, on
the cylinders via xRF =R cosðφkÞ with the inner cylinder covering only
five RF locations (cf. Fig. 6b). When presenting velocity observations,
vk, each RF location xRF hadmultiple overlapping vk (2 for one cylinder,
4 for nested cylinders where they overlapped). The observation noise
for velocity inputs, σobs, was multiplied by 20 for the single cylinder-
condition and by 30 for the nested cylinders-conditions, reflecting the
high local ambiguitywhenmeasuringmultiple overlapping speeds and
directions89. For consistency with other simulations, we provided a
vestibular input with the same parameters as in previous location-
indexed experiments, although this signal plays no computational role
in the SfM simulations.

The model’s component matrix, C, comprised translational
self-motion, rotational motions for the outer cylinder, the inner
cylinder (only in nested conditions), and shared for both cylinders
(only in nested conditions), as well as translational individual
components for each vk (see Fig. 6c, g). Rotational motion is natu-
rally covered by our model as presented in Radial and rotational
motion sources earlier in Methods and sketched in Fig. 6b. To solve
the correspondence problem of overlapping vk, we devised the
following assignment process. At every integration time step, δt,
and for every RF location, xRF, keep the previous assignment with
probability 0.7, and continue to the next xRF. Else, that is if the
assignment is re-evaluated, calculate the Euclidean distance
between the model’s expected velocities, C μt, and the observed
velocities, Pj vt, for all permutations, Pj, of the overlapping inputs
within this RF. Then choose the assignment, Pj, that minimizes the
Euclidean distance, i.e., the local prediction error, ϵt, within the RF.
Once all xRF were processed in this manner, perform the integration
of ∂tμt according to Eq. (2) using the assigned permutations of vt.
This completes the model for SfM perception. We note that, since
the integration is performed only after all RF assignments have been
made, the resulting global assignment process is independent of
the order of iterating over the RFs and could, in principle, be per-
formed in parallel and continuous time. The fact that all computa-
tions are spatially confined to information within each RF further
improves the process’s biological plausibility.

For obtaining the switching distribution in Fig. 6e, weperformed a
10,000 s long simulation and followed ideas from ref. 90: first we
identified a perceptual threshold as the mode of f∣μrot

t ∣8 tg (the exact
value is actually not important). Then we defined two possible per-
cepts which correspond to positive (negative) values of μrot

t . A per-
ceptual switch occurred whenever μrot

t crossed the negative (positive)

threshold of the other percept. The Gamma distribution was fitted by
maximum likelihood.

Network implementation (Fig. 7)
A detailed derivation of how to implement the online hierarchical
inference model in a neural network model is provided in Supple-
mentary Note 4. In the following, we will focus on the specific model
parameters used in the simulations of Fig. 7.

For both simulations (the demonstration in Fig. 7e–j and the
proposed experiment in Fig. 7k–m), there were K = 6 location-indexed
input variables in D = 2 spatial dimensions. Input was encoded
according to the model of area MT presented in Supplementary
Note 4, Section 6. Eachvelocity, vk, was encodedby a population of 192
neurons, with tuning centers organized on a polar grid with Nα = 16
preferred directions, and Nρ = 12 preferred speeds (sketched in Fig. 7c
for smaller values of Nα and Nρ). Each neuron in each of the K popu-
lations thus has coordinates (nα, nρ) describing its preferred direction
and speed. To account for the reported bias ofMT tuning toward slow
speed67, the density of preferred speeds became sparser for higher
speeds, which we modeled in Supplementary Note 4, Eq. (70) by
μρðnρÞ= ρmin +dρ n

1:25
ρ , with dρ = ðρmax � ρminÞ=ðNρ � 1Þ1:25, and

ρmin =0:1, ρmax = 8:0, for neurons nρ = 0, . . ,Nρ − 1. Preferred directions
covered the circle equidistantly. The remaining parameters in the
tuning function were κα = 1/0.352 and σ2

ρ =0:35
2 for the angular and

radial tuning widths, respectively, and ψ =0.1 Hz for the overall firing
rate scaling factor. For the network simulations, we increased the
frame rate to δt = 1/120Hz for the sake of a higher sampling rate on the
x-axis in Fig. 7h–j (the simulation software stores firing rates only at the
time of frames).

The distributed population comprised 100 neurons. Readout
vectors, ax, for all variables represented by this populationwere drawn
i.i.d. from a standard normal distribution, N 0, 1ð Þ, for each vector
element. Adjoint matrices were calculated numerically to fulfill the
required orthonormality conditions (see Supplementary Note 4, Sec-
tion 4). The low-pass filtering time constant of the prediction error was
τϵ = τs/2 = 0.050 s, such that theprediction error could react to changes
in μt.

The one-to-one population comprised M neurons (or small
populations; M = 8 for the demo, and M = 7 for the proposed experi-
ment), one per function value, f Σðλ2mÞ. The proportionality constant for
the readout was f Σðλ2mÞ=0:001 r1�to�1,m.

Given the parameters and decoding vectors, the simulation soft-
ware automatically transforms the differential equations of the online
inferencemodel into the corresponding neural dynamics, according to
the rules stated in Supplementary Note 4, Section 4. Numerical inte-
gration of neural dynamics was performed by the same RK45 method
used in the previous simulations.

For the demonstration in Fig. 7e–j, inputs were arranged on a ring
of radius Rk = 1 with angular location ϑk = 60° ⋅ k (measured from the
x-axis in counter-clockwise direction). Presented velocities were
ðvx , vyÞ= ð�2 sinðϑkÞ, 2 cosðϑkÞÞ for t ≤ 1 s, ð2 sinðϑkÞ, � 2 cosðϑkÞÞ for
1 s < t ≤ 2 s, and ð2 + 2 sinðϑkÞ, � 2 cosðϑkÞÞ for 2 s < t. In the C-matrix
underlying the network construction, the shared polar visual compo-
nent was constructed according to Supplementary Note 1, Eq. (6). The
shared translational and the 6 individual components were Cartesian.

In the proposed experiment in Fig. 7k–m, all motion compo-
nents and the input were Cartesian such that input location played no
role (formally, we maintained the circular arrangement of the pre-
vious network simulation). Input was generated from the model’s
underlying generative model for a motion tree comprising 1 shared
component and 6 individual components. For a given fraction of
sharedmotion, q, we set λ2shared = 2

2 q and λ2ind = 2
2 ð1� qÞ. Maintaining

constant total squaredmotion strength, λ2shared + λ
2
ind = 4, ensures that

the (marginal) input velocity distributions are statistically identical
across all input locations and all values of q. In total, seven fractions,
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q = 1/8, 2/8, . . , 7/8, of shared motion were presented. Per simulation
run, each fraction was presented for 10 s, and simulations were
repeated for 10 runs. For the subsequent data analysis, the neural
responses of only the 2nd half (5 s ≤ t) of the stimulus presentation
were considered to avoid potential initial transients. A standard lin-
ear regression model (with intercept; class sklearn.li-
near_model.LinearRegression) was trained to decode the
correct q from the distributed population’s response, rdis, for the
fractions q = 1/8 and q = 7/8. The resulting linear readout (with
intercept) was employed to decode q from rdis for the remaining
stimuli in Fig. 7m.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
No new experiment data was produced for this study. The behavioral
data from ref. 17 is available with the original publication. The beha-
vioral data for ref. 36 has been digitized by the authors and is included
in the software repository: https://github.com/DrugowitschLab/
structure-in-motion/blob/main/data/data_Braddick_2002_Fig3C.
txt. Source data are provided with this paper.

Code availability
Computer simulations, data analyses and visualization have been
performed with custom Python code which has been released88 under
the BSD 3-clause license and is available online: https://github.com/
DrugowitschLab/structure-in-motion.
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Supplementary Fig. 1 | The online inference model correctly recovers the structure and motion sources of presented
input. (a) Inferred motion strengths by the model. Two-dimensional input was generated from the generative model for a deeply
nested structure with shared motion (pink; λ=4), two separate groups of counter-rotating sub-groups (dark- and light-blue; +/−
in the inset indicates Ckm =+1/− 1; λ=2.25 and 1.75), and eight individual motions (greens; λ=1). Other parameters are the
default parameters for object-indexed experiments (see table in the Methods section of the main paper). Shown are the inferred
strengths for the online inference model (solid lines; labeled “Approx. algorithm“, given by eqn. (1)−(3) of the main text), the more
accurate, but computationally also more complex online EM algorithm (dashed lines; given by eqn. (29), (30), and (35) of the
Supplementary Information), and the ground truth (dotted lines). The approximate algorithm yields results similar to the reference
online EM algorithm. Both algorithms underestimate the motion strengths due to the sparsity prior p(λ2). (b) Inferred motion
sources, x-direction for the highlighted duration of the simulation in panel a. Same color key as in panel a. (c) Same as panel
b, but for the y-direction. (d) Repetition of the simulation in panel a, but with 10x longer time constant τλ, longer run time, and
uniform prior over the motion strengths. The underestimation in the reference algorithm vanishes; the approximate algorithm
maintains its approximation quality. (e) Repetition of the simulation in panel a, but with a temporally changing structure. After 10 s,
the shared component is switched off in the input. After 20 s, the shared component is re-introduced, but the groups are switched
off. Both inference algorithms successfully detect these changes. Source data are provided as a Source Data file.
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Supplementary Fig. 2 | The online model prefers simple structures, recruiting only necessary components from the
reservoir. Shown is a repetition of the Johansson experiment from Figure 2c, yet with a duplicated shared motion component
in the observer model (pink and orange, see inset in the top-left). A small difference at initialization (t=0) between the two
components widens, such that eventually only one component is recruited and the other one is dismissed. This preference for
simpler structures is a direct consequence of the sparsity-inducing Jeffreys prior. If a uniform prior had been used, both shared
components would have been maintained (not shown). Furthermore, we notice that the reference online EM algorithm converges
more rapidly than the approximate algorithm. The reason is found in the posterior covariance matrix, Σ, which is fully computed
for online EM according to eqn. (29) and in which the off-diagonal element between the two shared components introduces
competition during the credit assignment in eqn. (39) (uncertainty in the two sources is negatively correlated, leading to a negative
matrix element in Σ). Source data are provided as a Source Data file.
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Stimulus: G,  Human choice: G,  Model pred. prob.: (I,G,C,H) = 0.01, 0.95, 0.01, 0.03
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Stimulus: G,  Human choice: H,  Model pred. prob.: (I,G,C,H) = 0.01, 0.37, 0.03, 0.59
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Stimulus: C,  Human choice: C,  Model pred. prob.: (I,G,C,H) = 0.04, 0.01, 0.85, 0.10
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Supplementary Fig. 3 | Examples of motion structure inference for trials from (Yang et al., 2021). Shown are traces for
λ(t) for eight example trials of participant # 1. Axes titles state the ground truth, the participant’s classification, and the predicted
choice probabilities of the model. Left column: Trials of each structure which were correctly classified by the human participant.
Right column: Trials of each structure which were incorrectly classified by the human participant. Source data are provided as a
Source Data file.
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Supplementary Fig. 4 | The online model captures participant-specific error patterns in the data from (Yang et al., 2021).
Shown are the confusion matrices for all 12 participants along with the cross-validated predictions of our model. The model
captures participant-specific patterns, such as general performance levels; the preferential misclassification of hierarchical motion
(H) as either global (G) or clustered (C); and the asymmetry between the I-C and C-I elements. Source data are provided as a
Source Data file.
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Supplementary Fig. 5 | Inferred motion sources for the center-surround interaction MDR experiment by (Takemura et al.,
2011). (a) Used motion tree with four hierarchy levels. (b)–(f) Example trials for each of the experiment conditions from Figure 4h–l
of the main text. Shown is the evolution of motion sources (solid lines: x-direction, dashed lines: y-direction, colors as in panel (a)).
For visual clarity, only the “inner branch” (left half of the tree) is shown, and traces were smoothed with a 500 ms box filter for
plotting (the histograms in Figure 4 are based on the non-smoothed data). The perceived directions in Figure 4 are the sum of the
sm’s at trial end, without self-motion. Source data are provided as a Source Data file.
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Supplementary Fig. 6 | Detailed evolution of all motion strengths and sources in the illusion from Lorenceau. (a) Motion
strengths, λ(t), in the low-noise condition. Motion is decomposed into a deep hierarchy of self-motion (yellow), shared motion
(magenta), group motion (dark and light blue), and individual motion of all K=20 dots (greens). In the generative model, self-motion
affects the velocities of all dots and of the zero-mean vestibular input (lowest row in the C-matrix inset). (b) Inferred x-direction,
µx(t), of all motion sources in the low-noise condition, for the highlighted duration in panel a. (c) Same as panel b, but for the
y-direction. (d–f) Same as panels a–c, but for the high-noise condition. Source data are provided as a Source Data file.

7/29



a

|--
- O

bs
. v

el
oc

iti
es

 --
-|

Vest. 

Rotational
source 1 0 1

Ckm for rotational source
0 10 20 30 40

Time [s]

0

1

2

3

4

5

St
re

ng
th

s,
 

(t)

b

0 10 20 30 40
Time [s]

2

1

0

1

2

So
ur

ce
s,

 x
-d

ir.
 &

 ro
ta

tio
n,

 s
(t)

c

Supplementary Fig. 7 | A rotating cylinder is perceived for SfM also when more motion components are available. (a)
Component matrix with additional motion components. From left to right: Translational self-motion, rotational motion around
vertical axis, translational motion for all visual inputs, translational motion for all dots on the back of the cylinder, translational
motion for all dots on the front of the cylinder, translational motions for each individual observed velocity. All translational motions
have ‖Ckm‖=1 or 0, and their colors indicate the line colors in panels (b) and (c). For the rotational motion component, the color
map shows the value for the vx-direction, i.e., vx,k(t)=Ck,2 srot(t) + contributions of other sources. The locations of the observed
velocities lie on the cylinder starting on the right and then ascending in CCW direction when viewed from the top (cf. Figure 6b of
the main text). Thus, srot > 0, i.e., CCW rotation, leads to vx < 0 for locations at the back of the cylinder. The rotational source,
srot, is shown in magenta in panels (b) and (c) (b) Identified motion strengths. Even with the richer set of available components,
the model identifies only the rotation (magenta). (c) Inferred motion sources. The bi-stability of the perceived rotation remains
unaffected by the richer available structure (cf. Figure 6d of the main text; same random seed used for observation noise and
stochastic time points of the assignment process). Source data are provided as a Source Data file.
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List of used variables

Variable Description Variable Description

v = (v1, ..,vK)
T Observable velocity s = (s1, .., sM)T Latent motion source

vk = vk,d(t) Dim. d and time t often suppressed sm = sm,d(t) Dim. d and time t often suppressed
v̂ = (v̂1, .., v̂K)

T Noise-free velocity λ = (λ1, ..,λM)T Motion strength
µ = (µ1, ..,µM)T Mean vector in s-posterior ε = (ε1, ..,εK)

T Prediction error
Σ = Ω−1 Covariance in s-post. and inv. precision fΣ Adiabatic approx. of σ2

σ2 Vect. of diag. elements (Σ11, ..,ΣMM)T C Component matrix of shape (K×M)

D no. dimensions cm m-th column of C
diag[x] Diag. matrix over some vec. x 〈 f (x)〉p(x) Expectation of f (x) under p(x)
τs Time const. for s-inference (OU process) J Interaction prior on motion comp.
τλ Time const. for λ-inference δt Obs. interval (inverse frame rate)
τε Time const. for pred. err. δ(t), δij Dirac and Kronecker delta
tobs Obs. time point in cont.-time (CT) ∂t Partial derivative (here, w.r.t. t)
t No. time steps (DT); Or: time (CT) ν No. of µ-pseudo obs. (hyperprior)
Iχ(ν,κ2) Scaled inverse chi-squared distribution κ Val. of pseudo observations
σρ MT width of speed tuning κα MT precision of direction tuning
σobs Observation noise (δt-independent) Q(λ) EM expect. compl. data log-likelihood
σ̃obs Disc.-time obs. noise (=σobs/

√
δt) S Structure I, G,C, H in (Yang et al., 2021)

R Radial rec. field loc. β Inv. temp. in (Yang et al., 2021)
ϑ Angular rec. field location bG,bC,bH Biases in (Yang et al., 2021)
sr, sϕ Polar sources: radial and angular velocity πL Lapse prob. in (Yang et al., 2021)
ρ Speed in MT tuning func. α Direction (angle) in MT tuning
nρ, nα, Nρ, Nα MT neuron indices, max. values µρ(nρ), µα(nα) Tuning center of neuron (nρ,nα)

ψ MT max. firing rate multiplier In(κ) Modified Bessel function of order n
f , fσ, fρ, fα MT tuning func. and sub-functions I Identity matrix
W ,W Linear maps in algo. & neural domain Q, Q Quad. maps in algo. & neural domain
b,b Add. constants in algo. & neural domain A, A† Linear decoding matrix & adjoint
x,y,z Variables in generic network derivation xk, yk Spatial locations for 2-dim. stimuli
rinp, rdis, r1-to-1 Firing rates in the network model γ Direction repulsion opening angle
vvst Vestibular self-motion input ϕ̇ Angular (rotational) velocity
σvst Obs. noise for vestibular input ṙ Radial velocity
ηC Learning rate for C-learning

Supplementary Table 1 | List of used variables. In a few cases, we chose to accept notation clashes when confusion is ruled
out and the dual use actually facilitates clarity. These cases are indicated with “Or:” in the description.
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Theory of the online hierarchical inference model and the neural network model
In Supplementary Note 1, we introduce the generative model for structured motion. In Supplementary Note 2, we
derive the online hierarchical inference model. In Supplementary Note 3, we present optional extensions to the
inference model. In Supplementary Note 4, we derive the recurrent neural network model.

Supplementary Note 1. Generative model of structured motion
The following model of hierarchically structured motion is an adaptation of the generative model from Bill et al. [1].
We consider K observable velocities, vk,d(t), in D spatial dimensions. To prevent clutter, we will develop most of
the theory for the one-dimensional case, D=1, and use the vector notation, v=(v1, ..,vK)

T. The extension to D>1 is
straightforward and will be covered in a dedicated subsection. We will often suppress the explicit time dependence
when confusion is ruled out. In other cases, we may write time as an index, vt, when a compact notion is desirable.
Observable velocities, v, are noisy instantiations of noise-free velocities, v̂, which are generated by M latent motion
sources, sm,d(t), as will be specified below. Similar to velocities, we abbreviate s=(s1, .., sM)T.

1.1 Composition of observable velocity from motion motifs
For most of this work, we restrict the influence of motion source sm(t) on velocity v̂k(t) to three particularly basic
relations: the motion of sm can affect v̂k either positively (e.g., the latent flock motion on an observed bird’s velocity),
negatively (e.g., the effect of self-motion on the observed scene), or not at all (e.g., the flock motion’s effect on a
tree). Formally, we describe these influences in a K×M component matrix C, with Ckm= + 1, −1, and 0 for positive,
negative and absent influence, respectively. We will sometimes refer to the columns of C as motion motif or motion
component cm. Typically, we have M > K because every observable can have its individual motion component which
exclusively affects this observable.

The overall velocity v̂k is the sum of all the motion sources’ contributions:

v̂ = C s . (1)

It is easy to see that all tree-like hierarchies can be cast into this form. As a word of warning, the opposite is not true:
not every possible C represents hierarchically structured motion.

Finally, it is worth mentioning that motion components are not necessarily limited to the simple Ckm= ± 1 values.
For modeling gradual relationships, a motion source could affect some observables stronger than others. For instance,
the current of a river could influence the water’s velocity in the middle of the river stronger than close to the bank.
All subsequent derivations likewise hold for such gradual relationships, as long as they influence the observed
velocities linearly.

1.2 Generation of observable velocities from stochastic, latent motion sources
For the generative model, we assume that the motion sources, sm(t), evolve independently according to an Ornstein-
Uhlenbeck process, see, e.g., [2],

dsm =− 1
τs

sm dt + λm dWm , (2)

where Wiener process Wm(t) drives changes in sm via random forces, motion strength λm ≥ 0 controls the magnitude
of these forces, and τs > 0 is the typical time constant of significant changes in sm. The equilibrium distribution of
this process is a normal distribution with zero mean and variance τs

2 λ2
m:

lim
t→∞

p(sm(t)) =N
(
sm; 0, τs

2 λ2
m
)

. (3)

The Ornstein-Uhlenbeck process is a suitable first-order approximation for modeling real-world motion as it
(i) generates continuous trajectories sm(t), (ii) includes a notion of inertia/momentum via its temporal filtering
with τs, (iii) offers an intuitive parameterization by scaling typical velocities linearly in λm, and (iv) implements a
slow-velocity prior via a normal distribution like in Ref. [3].

Observable velocities, v(t), are generated by composing the latent motion sources to noise-free velocities according
to eqn. (1) and then applying independent Gaussian noise:

v(t)∼N
(
C s(t), σ̃2

obs I
)

. (4)
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Supplementary Fig. 8 | Coordinate transformation from polar motion sources to Cartesian velocities for supporting
rotational and radial motion motifs. When receptive field (RF) centers are fixed, rotational motion, ϕ̇, and radial motion, ṙ,
feature fixed linear relations to the resulting Cartesian velocities in x- and y-direction. The angles ϑ and ϕ are measured relative to
the x-axis in counter-clockwise direction by convention. Cartesian components are measured in rightward (x) and upward (y)
direction.

In foresight of the continuous-time formulation, we denote the observation noise by σ̃obs (with a tilde). It will later
be adjusted to the frame rate of incoming observations such that the information per unit time remains constant.
To keep the derivation tractable, we will ignore the reported velocity-dependence of observation noise in human
perception (Weber’s law) and treat σ̃obs as a constant.

Marginalizing over the stationary distribution of the latent motion sources, eqn. (3), the observable velocities are
jointly normally distributed due to their linear dependence on a Gaussian origin, with zero mean and covariance
matrix τs

2 C diag
[
λ2]CT + σ̃2

obs I, with diag
[
λ2] denoting the diagonal matrix generated from vector λ2=(λ2

1, .., λ2
M)T.

1.3 Motion structure
The motion strengths λ play a particularly important role in the generative process described by eqn. (2)+(4). For
λm=0, dependent motion sources decay to zero, i.e., sm→ 0. Hence, motion strengths describe the presence (λm > 0)
or absence (λm=0) of motion components, as well as their typical magnitude (〈|sm|〉 ∝ λm). In other words, given a
reservoir of components, C, which have been learned to occur in visual scenes in general, the vector λ will describe
the structural composition of motion relations in a specific visual scene. Knowing λ therefore is equivalent to
knowing the motion structure of the scene.

1.4 Extension to multiple spatial dimensions
For D > 1, we will usually assume that all sm,d with the same index m share motion strength λm and motion
component cm, yet each sm,d follows its own stochastic evolution, i.e., has its own Wiener process, Wm,d, in eqn. (2).
This choice reflects that space is isotropic: due to the Gaussianity of each sm,d, the joint distribution p(sm,1, .., sm,D) will
be a multivariate Gaussian with covariance matrix τs

2 λ2
m I, with I denoting the identity matrix, and is, thus, invariant

to rotations in the experimenter’s choice of the coordinate system. Again, this is a useful first-order approximation,
even though human motion perception has been reported to be not perfectly isotropic [4, 5].

In summary, the generative model of structured motion is characterized by the following set of parameters:
number of spatial dimensions D, motion strengths λ, component matrix C, time constant τs, and observation
noise σ̃obs. Some extensions of this model covering heterogeneous time constants, non-isotropic observation noise
and missing observations will be discussed in dedicated subsections in the context of online inference, below.

1.5 Polar coordinates: rotational and radial motion
The discussion so far assumed that motion sources affect velocities in a translational (Cartesian) manner, that is, by
adding the same vector to all dependent velocities. An important exception are rotational and radial motion in two
dimensions (D=2) which typically occur in flow field parsing (when moving forward, everything expands on the
retina; when tilting your head, everything rotates in the opposite rotational direction).

It turns out that rotational and radial motion sources can be incorporated into our framework of linear velocity
generation as per eqn. (1), when the spatial locations of all dependent velocities are fixed. This is, for example, fulfilled
in experimental setups using drifting gratings: the drifting grating has motion energy, but its location stays fixed
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at the same spot. Note how this setup is different from the perspective commonly taken in physics where velocity
entails changes in location. The perspective we take here is geared towards studying brain computation where a
group of neurons often processes motion in a certain, fixed area of the inputs. Specifically, this is satisfied in many
visual areas including V1, MT, and MST, where neurons feature a fixed spatial receptive field in retinal coordinates.
The index k in vk then refers to a fixed location on the retina. We therefore call this condition “location-indexed”.

To derive the generative model for rotational and radial motion in a location-indexed experiment, consider the
spatial receptive fields illustrated in Supplementary Fig. 8. Each receptive field (RF) has a fixed center relative
to the fovea and is characterized by radial distance R and angle ϑ, which is measured relative to the x-axis in
counter-clockwise direction by convention. The generative model can use latent motion sources in radial direction,
denoted by ṙ in the figure, and in angular direction, denoted by ϕ̇. These polar motion sources generate velocities ẋ
and ẏ in Cartesian space. Importantly, the (generative) transformation from polar to Cartesian coordinates is linear
for each receptive field:

ẋ = ṙ cosϑ− ϕ̇ Rsinϑ (5)
ẏ = ṙ sinϑ + ϕ̇ Rcosϑ .

Consequently, the generative process can be included into the component matrix C when each polar motion source
affects dependent observables, v̂k, in both spatial dimensions. In contrast to the previously discussed translational
motion sources, rotational and radial motion sources may maintain separate motion components cm and motion
strengths λm:

ck,m=rad,d=x = cosϑk , ck,m=rot,d=x =−Rk sinϑk (6)
ck,m=rad,d=y = sinϑk , ck,m=rot,d=y =+Rk cosϑk .

As before, the model adds up the velocities from different sources and applies the observation noise only to the final
velocity (in Cartesian space). The example of rotational and radial motion demonstrates how spatial dimensions can
be mixed, as long as the coordinate transformation is linear for every observable v̂k.

As a remark, the released Python code does not support separate motion strengths for rotational and radial
motion, for technical reasons. Thus, in simulations containing shared rotation and shared expansion about the fovea,
both motion sources share the same strength.

Rotation in 3D and structure-from-motion. The above addresses rotations around a pivot point on the fovea, i.e., the
rotation happens in the same plane as the observations. A different form of rotational motion, which is equally
covered by the generative model, is used for the structure-from-motion experiments in Figure 6 of the main text.
Here, the rotation is around an axis that lies in the observation plane (e.g., the y-axis in the x-y-plane) while the
motion happens in 3D, including a depth component, v̂k,z. As illustrated in Figure 6b of the main text, rotation (and
also expansion around the axis) lead to a linear relation between the rotational motion source, srot

t , and the noise-free
velocity vectors, v̂t, at every fixed location in location-indexed experiments. As before, noise is added in Cartesian
coordinates. Note that in the SfM displays of the main text, no depth information is presented in order to make the
stimuli ambiguous with regard to their direction of rotation.

Supplementary Note 2. Online hierarchical inference
In Supplementary Note 2, Section 1, we develop the hierarchical inference algorithm in a discrete-time, batch
formulation, using the Expectation-Maximization (EM) algorithm. In Supplementary Note 2, Section 2, we draw
the continuous-time limit to obtain an online algorithm. Finally, in Supplementary Note 2, Section 3, we introduce
an adiabatic approximation which reduces the required computations to neuron-friendly operations. This is the
online model underlying all simulations of the main paper.

2.1 Inference via the Expectation-Maximization algorithm
Our goal for motion structure inference is to simultaneously infer the value of motion sources s(t) and the underlying
structure λ from a stream of observations v1:t = (v1, ..,vt) with observations arriving at time steps of duration δt
(inverse frame rate). The number of spatial dimensions D, components C, time constant τs, and observation noise σ̃obs
are assumed to be known (although C could be learned on longer time scales, see Supplementary Note 3, Section 5).
The challenge in this hierarchical inference task is that st and λ are mutually dependent on another: λ acts as a
parameter in p( st |λ ) per eqn. (2), and will therefore affect the posterior p( st |v1:t ). On the other hand, inferring the
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presence of, say, flocking birds (λflock > 0) depends on “perceiving” an instantaneous flock motion, sflock(t), in the
first place.

The EM algorithm [6] offers a solution to this chicken-and-egg problem. For its application, we leverage the
fact that motion sources and strengths change on different time scales, τs for st and τλ for λ. For τλ� τs, we can
treat λ as a constant while inferring s(t)—known as the E-step in EM—, and then, in alternation, optimize λ based
on the inferred motion strengths—the M-step in EM. In Supplementary Note 2, Section 1.1 and Supplementary
Note 2, Section 1.2, we will address the E-step and the M-step separately. As before, we will develop the theory in
one spatial dimension for notational clarity and then generalize to D > 1. Further, we will present the derivation in
discrete time in a batch formulation. The continuous-time limit will be drawn in Supplementary Note 2, Section 2.

2.1.1 Inference of motion sources for a given structure (E-step)
For the E-step, we aim to infer p( s1:t |v1:t ; λ ) for a given structure λ, and then compute the expected value of the
log-likelihood of the augmented data distribution p(v1:t, s1:t ; λ), see, e.g., Section 9.3. in [7]. For the remainder of this
subsection, we will often suppress the explicit dependence on λ to avoid notational clutter. Since we are interested
in an online algorithm, we will use the filtering solution which is obtained from iterative application of temporal
propagation to the next observation time,

p( st−1 |v1:t−1 ) −→ p( st |v1:t−1 ) , (7)

and integration of the next observation,

p( st |v1:t ) ∝ p( st |v1:t−1 ) p(vt | st ) . (8)

Propagation, eqn. (7), is performed by propagating the density according to the stochastic process in eqn. (2).
Mathematically, this is done by convolving p( st−1 |v1:t−1 ) with the Gaussian transition density p( st | st−1 ) of the
Ornstein-Uhlenbeck process. Integration, eqn. (8), is the application of Bayes rule using the emission model of
eqn. (4).

For linear stochastic dynamics with a Gaussian emission model, i.e., the present case, the posterior will always
be a multivariate Gaussian with some mean µt and covariance Σt: p( st |v1:t ) =N (st; µt, Σt). Kalman filtering [8] is
one possible algorithm for calculating the posterior moments µt and Σt, and we refer the interested reader to the
Supporting Information of Ref. [1] for explicit forms of the Kalman filter’s state transition matrix and process noise
covariance matrix. For the present work, we will employ a more elegant, continuous-time solution that is equivalent
to the Kalman-Bucy filter [9, 10] for calculating µt and Σt. The derivation, which is provided in Supplementary
Note 2, Section 2, will furthermore facilitate a neuro-friendly approximate implementation (Supplementary Note 2,
Section 3). For now, let us assume that the posterior moments, µ1:t and Σ1:t, have been computed by whichever
method of choice.

E-step. We compute the expected value of the log-likelihood of the augmented data distribution,1

Q(λ) =〈log p(v1:t, s1:t ; λ)〉p( s1:t |v1:t )
(9)

=
t

∑
j=1
〈log p

(
vj | sj ; λ

)
+ log p

(
sj | sj−1 ; λ

)
〉p( sj ,sj−1 |v1:t )

(10)

ind.≈
t

∑
j=1
〈log p

(
vj | sj ; λ

)
+ log p(sj ; λ)〉p( sj |v1:j )

def.
=

t

∑
j=1

Qj(λ) , (11)

where, at the third equality, we have made two approximations, namely, that (i) consecutive observations were
independent, and (ii) we take the expectation w.r.t. the filtering posterior, p

(
sj |v1:j

)
, rather than the smoothing

density, p
(

sj |v1:t
)
. The first approximation will be corrected for during the M-step in Supplementary Note 2,

Section 1.2, where we will weigh the likelihood term as if it was comprised of only t · δt/τs independent samples
when combining it with a sparsity prior on λ. This correction is justified because it is equivalent to considering
only a sparse subsample of observations that each lie τs apart. Consecutive observations in this subsample are
almost decoupled since the Ornstein-Uhlenbeck process in eqn. (2) decorrelates the motions sources at time scale τs.
The second approximation—filtering rather than smoothing—is a modeling assumption for what information is
employed by an online agent, e.g., a human observer.

1In the 2nd line, we implicitly assume, for mathematical rigor only, that there is an initial distribution, p(st=0), which is absorbed again in the
3rd line.
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The Qj(λ) can be calculated analytically:

Qj(λ) =〈log p
(

vj | sj ; λ
)
+ log p(sj ; λ)〉p( sj |v1:j )

← with p(sj |v1:j) =N
(
sj; µj, Σj

)
(12)

=〈− 1
2 (vj − Csj)

Tσ̃−2
obs I (vj − Csj)− 1

2 sTj diag
[ τs

2 λ2]−1
sj − 1

2 log | σ̃2
obs I | − 1

2 log |diag
[ τs

2 λ2] |〉p( sj |v1:j )
+ const.

(13)

=
M

∑
m=1
− 1

τs

µ2
j,m + σ2

j,m

λ2
m

− 1
2

logλ2
m [dropping λ-independent terms and using 〈s2〉N (s;µ,σ2) = µ2 + σ2] (14)

with σ2
j,m := Σj,mm, | · | denoting the determinant, and the λ-independent terms have been dropped because they will

not play a role in the maximization w.r.t. λ in Supplementary Note 2, Section 1.2. For the full Q(λ), we thus obtain:

Q(λ) =
t

∑
j=1

Qj(λ) =−
t
τs

M

∑
m=1

〈µ2
j,m + σ2

j,m〉j
λ2

m
+

τs

2
logλ2

m , (15)

with 〈·〉j being the time average over the batch.

2.1.2 Inference of motion strengths and sparsity prior (M-step)
For the M-step, Q(λ) is maximized w.r.t. λ to obtain the maximum likelihood (ML) solution. Here, we will make use
of the additional freedom to impose a prior distribution, p(λ), on the motion strengths, see, e.g., Section 9.4. in [7].
First, we will introduce a family of prior distributions which reflect our knowledge that from a reservoir of motion
components most components will be absent or small in any given scene (sparsity prior). Then, we will perform the
M-step to derive the maximum a posteriori (MAP) solution.

Sparsity prior. In foresight of the M-step, we formulate the prior over λ2 (instead of λ) and choose

p(λ2 ; ν, κ2) =
M

∏
m=1
Iχ(λ2

m ; νm, κ2
m) with Iχ(λ2 ; ν, κ2) =

1
λ(2+ν)

exp
[
− νκ2

2λ2 − A(ν, κ2)

]
. (16)

Iχ(λ2 ; ν, κ2) denotes the density of the scaled inverse chi-squared distribution which is the conjugate prior to a
normal distribution with known mean and unknown variance. Conceptually, this is exactly our task at hand: we
know that 〈sm〉 = 0 in the generative model, but we have to estimate its variance, 〈s2

m〉, which is controlled by λ2
m.

As will become obvious in the M-step, the (hyper-)parameters, ν and κ2, will take the role of pseudo-counts and
pseudo-observations, respectively. The log-partition, A(ν, κ2) = logΓ( ν

2 )−
ν
2 log νκ2

2 , will have no effect on the MAP
estimate.

Two choices of ν and κ2 are of particular interest. For ν=κ2=0, we have p(λ2) ∝ 1/λ2 which is a non-informative
(Jeffreys) prior on the variance of s2. For ν=−2, κ2=0, we have p(λ2) ∝ 1 which is a uniform prior. The latter choice
of hyper-parameters will turn the MAP estimate into the ML estimate.

M-step. To maximize Q, we find the roots of its λ2
m-derivatives:

0 !
=

d
dλ2

m

(
Q(λ) + log p(λ2 ; ν, κ2)

)
=

t
τs

(
〈µ2

j,m + σ2
j,m〉j

(λ2
m)

2 − τs

2
1

λ2
m

)
+

νm κ2
m

2 (λ2
m)

2 −
1 + νm

2
λ2

m
(17)

⇒ t 〈µ2
j,m + σ2

j,m〉j +
τs
2 νmκ2

m = t τs
2 λ2

m + τs
2 (2 + νm)λ

2
m (18)

⇒ τs
2 λ2

m =
t 〈µ2

j,m + σ2
j,m〉j +

τs
2 νmκ2

m

2 + νm + t
. (19)

Eqn. (19) highlights several intuitive properties of motion structure inference. First, the MAP value of motion
strength λ2

m only depends on the inferred posterior moments of the corresponding motion source sm, that is, there is
no cross-talk between motion sources sm and sm′ . Second, recalling that τs

2 λ2
m is the expected long-term variance of sm

according to eqn. (3), eqn. (19) tells us to match this expected variance, τs
2 λ2

m, to the observed variance, 〈µ2
j,m + σ2

j,m〉j,
of the inferred motion source over time.2 Third, hyper-parameter κm plays the role of an average pseudo-observation,

2This is to be distinguished from the posterior’s instantaneous uncertainty σ2
t,m.
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τs
2 κ2

m = 〈µ2
m + σ2

m〉, which is then weighted as νm pseudo-samples against the t observed data samples. Thus, κm
describes (a priori) typical values of λm. (The summand 2 in the denominator of eqn. (19) is a relict of the scale-
invariant Jeffreys prior.) Finally, a uniform hyper-prior, νm=−2, κm=0, yields straightforward variance matching as
the ML solution.

We conclude the M-step, by correcting eqn. (19) for the fact that the t data samples actually only represent t · δt/τs
independent samples, as promised in Supplementary Note 2, Section 1.1,

τs
2 λ2

m =

t·δt
τs
〈µ2

j,m + σ2
j,m〉j +

τs
2 νmκ2

m

2 + νm + t·δt
τs

. (20)

Eqn. (20) is the batch solution to motion structure inference which we will build on for the continuous-time
formulation in Supplementary Note 2, Section 2.

2.1.3 Extension to multiple spatial dimensions
When D > 1, we typically assume that each λm controls the variance of the sm,d in all spatial dimensions d (see
Supplementary Note 1, Section 4). When going through the derivation of the EM algorithm, the decisive changes
happen in eqn. (15): (i) the expectation now runs over all spatial dimensions, i.e., 〈∑D

d=1 µ2
j,m,d + σ2

j,m,d〉j; (ii) the

log-partition gets multiplied by D, due to each λm contributing with the power of D to log |diag
[
λ2] |. With these

changes, the M-step in eqn. (20) finds its optimum when

D τs
2 λ2

m =

t·δt
τs
〈∑D

d=1 µ2
j,m,d + σ2

j,m,d〉j +
τs
2 νmκ2

m
2
D + νm + t·δt

τs

. (21)

Here, we have made a slight re-parameterization of νm and κm to preserve the developed intuition that κm describes
typical values of λm, and that νm counts the number of pseudo-observations.3

2.2 Continuous-time, online inference
We now turn to a continuous-time formulation of the above motion stucture inference algorithm. While doing
so, we will overload the notation of time t which previously denoted integer-valued time steps and now becomes
real-valued. We will point out the respective locations where this transition happens, below, to preclude confusion.
Concretely, we will first reformulate the generative model in the form of natural parameters in Supplementary
Note 2, Section 2.1. Then, we derive continuous-time dynamics on these parameters in Supplementary Note 2,
Section 2.2, as had been promised in Supplementary Note 2, Section 1.1, for solving the E-step. Finally, we cast
eqn. (21) into a recursive equation for an online, continuous-time M-Step in Supplementary Note 2, Section 2.3.
This results in the reference online EM algorithm for online hierarchical motion structure inference.

2.2.1 Equivalent formulation of the generative model and inference using natural parameters
Knowing that all distributions involved in propagation, eqn. (7), and integration, eqn. (8), are multivariate Gaussians,
we write the emission model, eqn. (4), in terms of the sufficient statistics of st,

p(vt | st ) =N
(
vt; C st, σ̃2

obs I
)

∝ exp

( st

stsTt

)
·

 CT vt
σ̃2

obs

− 1
2

CTC
σ̃2

obs

 , (22)

where we have dropped all st-independent terms because they will play no role in the inference. Denoting the
propagated, yet pre-integration, distribution by

p( st |v0:t−δt ) ∝ exp

[(
st

stsTt

)
·
(

Ωµt

− 1
2 Ωt

)]
, (23)

3Specifically, we substituted νm
D → νm and Dκ2

m→ κ2
m. Then, νm=1 means one pseudo-observation in each spatial dimension. A uniform prior

is imposed by νm= − 2/D and κm = 0.
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with yet-to-be-determined natural parameters Ωt :=Σ−1
t and Ωµt :=Ωt µt, the integration of observations, eqn. (8),

amounts to the following simple updates:

Ωt 7→Ωt +
CTC
σ̃2

obs
and Ωµt 7→Ωµt +

CT vt

σ̃2
obs

. (24)

In eqn. (23), we have made use already of the continuous-time notation, with time running from 0 to t and observations
arriving at δt-intervals. We next address propagation, i.e., the continuous-time dynamics of eqn. (2) in terms of Ωµt
and Ωt.

2.2.2 Continuous-time dynamics of natural parameters
For the OU process, eqn. (2), we know the evolution of the distribution of st between observations in closed form
(see, e.g., [2]). Namely, the mean µt decays towards 0 exponentially with time constant τs, and the covariance Σt
decays towards its steady state value diag

[ τs
2 λ2] exponentially with time constant τs

2 . From these known dynamics
of µt and Σt, we calculate the dynamics of the natural parameters:

∂tΩt =−Ωt (∂tΣt)Ωt = . . . = ( τs
2 )
−1 (I −Ωt diag

[ τs
2 λ2])︸ ︷︷ ︸

©?

Ωt +
CTC
σ̃2

obs
δ(t− tobs) . (25)

For completeness, we have already included the integration of observations, eqn. (24), at observation time tobs in the
dynamics. In contrast to the dynamics of Σt, the dynamics of Ωt are non-linear. Yet, we observe that, in the absence
of observations, eqn. (25) leads to the desired fixed point since ©? = 0 for Ω−1 = diag

[ τs
2 λ2]. Likewise, we obtain for

the other natural parameter Ωµt:

∂t(Ωµt) = (∂tΩt)µt + Ωt (∂tµt) = . . . = τ−1
s (I − 2Ωt diag

[ τs
2 λ2])︸ ︷︷ ︸

©?©?

Ωµt +
CT vt

σ̃2
obs

δ(t− tobs) . (26)

Again, as a sanity check, we observe the desired decay to zero because of ©?©? →−1, in the absence of observations.

Continuous stream of observations. So far, we have treated observations vt as point observations which arrive
only at distinct time points tobs and, then, lead to “jumps” via integrating over the Dirac delta. For a complete
continuous-time formulation, we choose to turn observations into a continuous input stream. When observations
arrive every δt-interval and are corrupted by i.i.d. Gaussian noise of variance σ̃2

obs, we can render their information
content δt-independent by setting

σ̃2
obs = σ2

obs/δt (27)

with the alternative parameter σ2
obs being independent of the observation frame rate (see, e.g., [10, 11]). Furthermore,

for δt→ 0, we use that
δt δ(t− tobs)→ 1 (28)

because we get one Dirac delta-integration per δt in eqn. (25) and (26) while all other variables stay (almost) constant.
With these two substitutions, we obtain:

∂tΩt = ( τs
2 )
−1 (I −Ωt diag

[ τs
2 λ2])Ωt +

CTC
σ2

obs
, (29)

∂t(Ωµt) = τ−1
s (I − 2Ωt diag

[ τs
2 λ2])Ωµt +

CT vt

σ2
obs

, (30)

with a continuous stream of observations, vt. Together, eqn. (29) and (30) solve the E-step (from Supplementary
Note 2, Section 1.1) by re-transforming the parameters via Σt = Ω−1

t and µt = Σt Ωµt. These moments are used
in the filtering posterior p( st |v0:t; λ ) of the reference online EM algorithm. The solution in terms of natural
parameters is equivalent to the Kalman-Bucy filter [9] which is derived directly in terms of µt and Σt, as we will see
in Supplementary Note 2, Section 3.1.
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2.2.3 Simultaneous online inference of motion sources and structure
We complete our derivation of online, hierarchical inference of motion sources and motion structure by casting the
M-step, eqn. (20), into a recursive form and drawing the continuous-time limit. We restate eqn. (20) for reference,

τs
2 λ2

m =

t·δt
τs
〈µ2

j,m + σ2
j,m〉j +

τs
2 νmκ2

m

2 + νm + t·δt
τs

, (31)

where µj,m and σ2
j,m=Σj,mm are the posterior parameters obtained from the E-step. Recalling that λ2

t is based on the

time average of t discrete-time samples, we formulate λ2
t+1 as a sliding window average,

λ2
t+1 =

(
1− 1

t

)
· λ2

t +
1
t
·
(τs

2

)−1 t·δt
τs

(µ2
t+1 + σ2

t+1) +
τs
2 νκ2

2 + ν + t·δt
τs

, (32)

where (1− 1
t ) and 1

t are the weights for convex combination, and all vector operations are elementwise. Subtracting λ2
t

and dividing by inter-observation interval δt, we obtain:

λ2
t+1 − λ2

t
δt

=− 1
t δt

(
λ2

t −
(τs

2

)−1 t·δt
τs

(µ2
t+1 + σ2

t+1) +
τs
2 νκ2

2 + ν + t·δt
τs

)
. (33)

In this form, drawing the continuous-time limit is straight-forward. We let δt→ 0 while keeping τλ :=t δt constant:

∂tλ
2
t =−

1
τλ

(
λ2

t −
(τs

2

)−1 τλ
τs
(µ2

t + σ2
t ) +

τs
2 νκ2

2 + ν + τλ
τs

)
. (34)

Time t is now in continuous-time. The time constant τλ is the (continuous-time) width of the integration window and
defines the minimum time scale at which significant changes of λ2

t are expected to occur. From a strict algorithmic
perspective of EM, we require that τλ � τs. However, we observe in computer simulations that for practical
applications even small values, τλ ' τs, work reliably.

Extension to multiple spatial dimensions. We conclude by generalizing eqn. (34) to multiple spatial dimensions via
comparison of eqn. (20) and eqn. (21):

∂tλ
2
t =−

1
τλ

(
λ2

t −
(

D τs

2

)−1 τλ
τs
(∑D

d=1 µ2
t,d + σ2

t,d) +
τs
2 νκ2

2
D + ν + τλ

τs

)
. (35)

Eqn. (35) is used for inferring the motion strengths λ2
t in the reference online EM algorithm. The interactions of

eqn. (29), (30) and (35) confirm and particularize our earlier chicken-and-egg intuition that motion sources, st, and
motion structure, λt, are mutually coupled. The exact interactions are rather convoluted, and we will identify in
Supplementary Note 2, Section 3 an approximate interaction that is intuitively more accessible.

2.3 Adiabatic approximation for prediction error-based inference
The inference algorithm described by eqn. (29), (30), and (35) is a nice solution from a mathematical perspective. Yet,
for a theory of brain computation, it is questionable whether neural dynamics could reliably calculate 3rd-order
polynomials in the variables Ωµt, Ωt, and λ2

t as demanded, for instance, by eqn. (30).
In the following, we therefore explore an alternative, approximate solution which, as we will see, considerably

simplifies the involved computations while leading to almost identical results during motion structure inference. We
will proceed in three steps. First, in Supplementary Note 2, Section 3.1, we transfer eqn. (29) + (30) back into the
domain of moments, µt and Σt, and recover a prediction error-based update equation known as the Kalman-Bucy
filter [9, 10]. Then, in Supplementary Note 2, Section 3.2, we introduce an adiabatic approximation for the posterior
covariance, Σt, assuming that it has always converged to stationarity. Finally, in Supplementary Note 2, Section 3.3,
we derive an analytical solution for the converged uncertainty for the special case of diagonal covariance. The
resulting algorithm, which we term the adiabatic observer model in the Supporting Information and which is the online
hierarchical inference model used in the main text, features interpretable dynamics on the behaviorally relevant
quantities µt and λ2

t and relies on only quadratic computations of vector-valued variables, rather than 3rd-order
computations on matrix-valued variables.
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Supplementary Fig. 9 | Adiabatic, diagonal solution for the posterior variance. Shown is the function fΣ(λ
2
m), given by

eqn. (42). Parameters: τs=300ms, σobs=0.05, ‖cm‖2=4 .

2.3.1 Prediction error-based formulation
We first transform eqn. (29) into dynamics of Σt:

∂tΣt =−Σt (∂tΩt)Σt (36)

=−( τs
2 )
−1Σt + diag

[
λ2]− Σt

CTC
σ2

obs
Σt , (37)

and use this result for transforming eqn. (30) into dynamics of µt:

∂tµt = ∂t(Σt Ωµt) = (∂tΣt)Ωµt + Σt ∂tΩµt (38)

=−µt

τs
+ ΣtCT

(
vt

σ2
obs
− Cµt

σ2
obs

)
. (39)

Eqn. (39) is a pretty neat equation as it reveals the “inner working” of inference as updating µt with the help of
prediction errors (vt − C µt), which are projected “up” into motion source space via CT, and then weighted by the
relative uncertainty of internal estimates vs. the uncertainty of observations, Σt / σ2

obs. In particular, in the absence of
observations (σ2

obs→∞), the estimated mean µt = 〈st〉 decays to zero with time constant τs, as expected from the OU
process. At first glance, it may seem that the inferred structure, λ2, plays no role in inferring st anymore. But actually,
λ2 still is present in eqn. (39) indirectly through its effect on Σt. We will study this indirect effect in the following.

2.3.2 Convergence approximation on the posterior precision

For τλ > τs, we observe that Σt can be calculated directly as a function of λ2
t , instead of going through the hassle

of integrating eqn. (37). This can be see as follows. We know that the posterior covariance Σt decays towards its
stationary value with a time constant in the order of τs/2. The stationary value itself is a dynamic equilibrium between
increasing uncertainty due to diffusion (the underlying Wiener process in eqn. (2)) and decreasing uncertainty due
to incoming observations (corresponds to the term CTC/σ2

obs in eqn. (29)). Notably, the stationary value does not
depend on the observations, vt. This is a peculiarity of the inference task at hand which is known from Kalman
filtering. This leaves λ2

t as the only dynamic variable in eqn. (37) to influence the stationary point of Σt. Since
λ2

t changes on time scales τλ > τs, the covariance, Σt, will always have enough time to react to any change in its
stationary value. This justifies treating Σt as having converged at any time, a method known in physics as adiabatic
approximation.

For stationary Σt, it follows from setting ∂tΣt=0 in eqn. (37) that

τs

2
Σ

CTC
σ2

obs
Σ + Σ− diag

[ τs
2 λ2]= 0 . (40)

2.3.3 Analytic solution for diagonal covariance matrices
Eqn. (40) is a continuous-time algebraic Riccati equation which can, in general, be solved using eigendecompositions
of an extended matrix. However, for a neural implementation, we will follow a simpler route by assuming that
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Σ is diagonal. This amounts to ignoring correlations in uncertainty about latent motion sources in the posterior
distribution, for instance, during reasoning of the type: “I have correctly decomposed all velocities in expectation, and I
know my uncertainty about each motion component. But if I underestimated the flock velocity, then I likely overestimated the
birds’ individual velocities.” Only the last step of this reasoning will be ignored by dropping off-diagonal elements
in Σ. We observe in computer simulations that neglecting these posterior correlations typically has little impact on
the solution.

For diagonal Σ, eqn. (40) can be solved for each element σ2
m := Σmm separately:

τs

2
‖cm‖2

σ2
obs

(σ2
m)

2 + σ2
m −

τs

2
λ2

m = 0 , (41)

where we have defined ‖cm‖2 = ∑K
k=1 C2

km to denote the vector-norm of the m-th column of C, that is, the squared
Euclidean length of the m-th motion component. Solving eqn. (41) is straightforward, and we denote with fΣ(λ

2
m)

the resulting function for calculating σ2
m as a function of λ2

m:

σ2
m = fΣ(λ

2
m) =

σ2
obs

τs ‖cm‖2

(
−1 +

√
1 +

τs2 ‖cm‖2

σ2
obs

λ2
m

)
. (42)

fΣ is a monotonically increasing, non-negative function. Its graph is shown in Supplementary Fig. 9 for typical
parameter values. In the limit of small motion strengths, λm → 0, the variance grows quadratically in λm (non-
squared): fΣ(λ

2
m)≈ τs

2 λ2
m. For large strengths, λm→∞, the variance becomes linear in λm: fΣ(λ

2
m)≈

σobs
‖cm‖λm .

2.3.4 Putting it together: neuro-friendly algorithm for online structure inference

To obtain the neuro-friendly adiabatic observer model, we simply plug eqn. (42) into the dynamics of λ2
t , given by

eqn. (35), and µt, given by eqn. (39):

∂tλ
2
t =−

1
τλ

(
λ2

t −
(

D τs

2

)−1 τλ
τs
(∑D

d=1 µ2
t,d + fΣ(λ

2
t )) +

τs
2 νκ2

2
D + ν + τλ

τs

)
, (43)

∂tµt =−
µt

τs
+ fΣ(λ

2
t )CT

(
vt

σ2
obs
− Cµt

σ2
obs

)
, (44)

with fΣ(λ
2
m) =

σ2
obs

τs ‖cm‖2

(
−1 +

√
1 +

τs2 ‖cm‖2

σ2
obs

λ2
m

)
.

In this vector notation, fΣ(λ
2
t ) is evaluated elementwise, and the sum in eqn. (43) includes one evaluation of fΣ for

each spatial dimension d = 1..D. In eqn. (44), fΣ(λ
2
t ) is multiplied elementwise with the “up-projected” prediction

error.
We recognize how the motion structure, λt, controls the gating function, fΣ(λ

2
t ), for performing the credit

assignment of the prediction errors, in eqn. (44). Furthermore, we note that also the posterior uncertainty can be
recovered at any time since σ2

t,m = fΣ(λ
2
t,m).

For D = 1, eqn. (43) is eqn. (1) from the main text, eqn. (44) is eqn. (2), and eqn. (42) is eqn. (3).

2.3.5 A pleasant note on inference of rotational and radial motion
The approximations introduced for the adiabatic observer model hold, remarkably and importantly, also for the
biologically relevant case of radial and rotational motion (cf. Supplementary Note 1, Section 5 and Supplementary
Fig. 8 for the generative model).

To illustrate this, consider the case of two motion sources, radial srad(t) and rotational srot(t), with motion features
given by eqn. (6). The motion features C depend on the receptive field locations with parameters Rk and ϑk. For
inferring the radial component, srad(t), all receptive fields are equally informative, irrespective of their eccentricity, Rk.
Accordingly, eqn. (44) weighs all radial prediction errors equally, as expressed by the Rk-independence of the radial
row in CT. This is different when estimating rotational motion, srot(t). Here, prediction errors measured near the
fovea (small Rk) contribute only little to ∂tµrot: for small Rk, we expect to observe a small rotational motion energy
via C µt, such that the “Cartesian” observation noise of size σobs makes the stimulus virtually uninformative about
the rotational velocity ϕ̇. The scaling of CT with Rk accounts for that. Receptive fields far away from the fovea, in
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contrast, predict a strong rotational velocity via C µt, such that noise of size σobs (in Cartesian space) has only a minor
impact on estimating µrot. Accordingly, the scaling of CT with Rk assigns a higher weight to peripheral receptive
fields for estimating rotational motion.

As a final remark, the above example assumed the observation noise σobs to be constant across all receptive fields.
Eqn. (44) naturally supports extensions to heterogeneous observation noise because all local prediction errors are
measured in units of their local noise.

Supplementary Note 3. Extensions of the online model

3.1 Non-isotropic observation noise and missing observations
For the main manuscript, we have assumed the observation noise, σobs, to be a constant across time, t, observed
features, k, and spatial dimensions, d. In real-world scenes, the observation noise could change along all those indices.
An object could be occluded, or otherwise temporarily invisible, leading to 1/σ2

obs=0. Different objects might have
different observation noise, e.g., due to different visual contrast. The aperture problem could render local velocity
signals ambiguous: e.g., what is the direction of motion for a straight line that is larger than the aperture? This
could be modeled by small observation noise perpendicular to the line, and large noise parallel to the line. The
so-constructed diagonal covariance matrix, Σdiag, is then rotated as per Σxy=QT Σdiag Q with rotation matrix, Q,
into the canonical x-y-coordinate frame.

The above extensions of the observation noise are supported by our online model, as long as changes in σ2
obs

occur slower than τs (so the adiabatic approximation remains valid). In eqn. (44), 1
σ2

obs
is extended to have different

elements, 1
σ2

obs,k,d
, and is multiplied elementwise with vt,k,d and (Cµ)t,k,d. When calculating fΣ, replace

‖cm‖2

σ2
obs

by
(

CTdiag
[

1
σ2

obs

]
C
)

mm
(45)

for each spatial dimension. In eqn. (43), the summation then runs over the different spatial dimensions of fΣ. The
idea that 1

σ2
obs

is vector-valued is also used in the network implementation in Supplementary Note 4.

A note on the provided Python code package: In the code for the network, σ2
obs can currently have different

values for every input velocity vk, but is assumed to be (a) identical in both spatial dimensions, and (b) not to change
over time. The code for the algorithm is less restrictive by supporting temporary masking of inputs (presented via
class ObservationGeneratorVelo; leading to posterior variance σ2

m= fΣ(λ
2
m)=

τs
2 λ2

m if all dependent objects
are invisible according to eqn. (41)) and different noise in spatial dimensions.

3.2 Heterogeneous time constants
Different motion components, sm, might have different time-constants, τs, for typical changes in speed and direction
to occur. An extension to a vector τs=(τs,1, ..,τs,M) is straightforward by replacing all occurences of τs and 1/τs
by diag[τs] and diag

[
τs
−1], respectively. The code package supports heterogeneous time constants for both the

algorithm and the network.

3.3 Interaction priors capturing feature compatibility
Some motion components may be unlikely to occur together. Consider, for example, two cluster components in C
which are overlapping but do not contain one another: the simultaneous occurrence of the two clusters would not be
compatible with a tree structure. We can accommodate such incompatibility with the help of an interaction prior.

In the following, we outline how interaction priors can be included in the theory, and how they will affect the
inference process. We endow the λ2-prior from eqn. (16) with an interaction term:

p(λ2 ; ν, κ2) ∝

[
M

∏
m=1
Iχ(λ2

m ; νm, κ2
m)

]
· e
−1

2
(λ2)T J(λ2)

, (46)

where the interaction matrix J ∈RM×M is a symmetric, zero-diagonal matrix that models feature incompatibility. For
instance, positive values, Jml = Jlm > 0, describe a (soft) incompatibility between the mth and lth motion component.
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In the derivation of the M-step, the interaction prior leads to an additional term (−Jλ2)m on the right-hand side
of eqn. (17).4 For the optimum in eqn. (19), this leads to the following equation (using vector notation and covering
multiple spatial dimensions):

D τs
2

(
I +

2
2/D + ν + t

diag
[
(λ2)2] J

)
λ2 =

t ∑d〈µ2
j + σ2

j 〉j +
τs
2 νκ2

2/D + ν + t
. (47)

For small values of ‖J‖ or, similarly, large values of t (=τλ/τs in continuous-time), the matrix
J̃ :=

(
I + 2

2/D+ν+t diag
[
(λ2)2] J

)
is invertible with the approximate inverse J̃−1 ≈

(
I − 2

2/D+ν+t diag
[
(λ2)2] J

)
. We

can therefore move this matrix to the right-hand side and follow the derivation for online inference without interaction
priors. This leads to the following equivalent of eqn. (43):

∂tλ
2
t =−

1
τλ

(
λ2

t −
(

D τs

2

)−1
(

I − 2
2
D + ν + τλ

τs

diag
[
(λ2)2] J

) τλ
τs
(∑D

d=1 µ2
t,d + fΣ(λ

2
t )) +

τs
2 νκ2

2
D + ν + τλ

τs

)
. (48)

The only difference to eqn. (43) is that the target values on the right hand side are mixed together via J̃−1. This gives
rise to quite intuitive dynamics: if two motion components are incompatible, they mutually subtract their respective
(independent) target values from another, thereby slightly changing the motion structure in which the E-step will
interpret future input and, ultimately, leading to soft winner-takes-all competition. The term (diag

[
(λ2)2]) limits the

competition to those components that are significantly different from zero.

3.4 Detecting motion components that had decayed to baseline
If motion components are not detected in the structure for a longer time, the associated strength, λm, will decay to
zero. Since fΣ(0)=0, this will prohibit future detection of said motion component. This issue can be addressed in
two ways. In a biological agent, noise in the nervous system will lead to small fluctuations in the encoded value of
λ, thereby “probing” the presence of motion components simply via noisy deviations from λm=0. Alternatively, a
more principled solution exploits the hyperparameters, νm and κm, in eqn. (16) to prevent λm from decaying to zero,
e.g., by choosing νm=1 and κm=0.1. This follows the intuition that pseudo-observations in support of λm=κm had
been observed for a duration νm τs.

3.5 Learning the motion components on long time-scales
While not being the focus of this work, we briefly touch upon the question of how the motion components, C, could
be learned online from observations in an unsupervised manner. To this end, we follow a similar EM scheme as for
inferring λ and note that in eqn. (13) only the quadratic term depends on C. For the M-step, however, instead of
maximizing Q directly, we perform gradient ascent with respect to C:

∇CQt(C) = 〈∇C [−
1

2σ2
obs

(vt − Cst)
T (vt − Cst)]〉p( st |v0:t )

(49)

=
1

σ2
obs
〈vt sTt − C (st sTt )〉p( st |v0:t )

(50)

=
1

σ2
obs

(
vt µT

t − C
(

µt µT
t + Σt

))
. (51)

This gradient establishes the intuition to compare the observed covariance between inputs and motion components
against their expected covariance.

Furthermore, we note that the parameterization of motion structure via C and λ leaves an invariance: any scaling
of λ can be compensated by an inverse scaling of C. Due to the sparsity prior on λ, which favors small values,
this bears the risk of unbounded growth in C. We can address this risk by imposing a regularizing prior on C,
e.g., a Laplace prior or a Gaussian prior, such that the system finds a balance between small λ and small ‖C‖. We
incorporate the regularizer in the gradient-based update rule with the aim to balance prior and likelihood such that
the likelihood is weighted to contribute NC independent samples:

∂tC = ηC

[
1

σ2
obs

(
vt µT

t − C
(

µt µT
t + Σt

))
+

1
NC
∇C log p(C)

]
. (52)

4Note that the normalization of the distribution in eqn. (46) will not depend on λ2, and thus will play no role in the M-step, which uses
λ2-derivatives of log p(λ2).
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Examples for the regularizer are ∇C log p(C) = −sign(C)/b for a Laplace prior and ∇C log p(C) = −C/b for a
Gaussian prior. For the online M-step, both µt and λt must have time to adapt to any changes in C. This is ensured
by requiring that the learning rate, ηC, is small enough to average over a large number of independent samples, i.e.,
ηC� 1/τλ. The small learning rate emphasizes how we think of C-optimization as a long-term learning process of a
“feature dictionary”.

Eqn. (52) offers a path to learning C via an online EM algorithm. In a network implementation with linear
population codes, however, it remains unclear how the update could be communicated to synapses: C determines
many synaptic weights in the network. Finding encoding and decoding vectors of the variables to support simple
plasticity rules is future work.

Supplementary Note 4. Neural network implementation
How could biological recurrent neural networks implement online motion structure inference? In light of the theory developed
in Supplementary Note 2, Section 3, we will operationalize this question by implementing eqn. (43) and eqn. (44).

While we will strive to incorporate salient properties from motion sensitive brain areas, the exact computational
mechanisms underlying many experimental findings are still elusive. Thus, inevitably, several modeling assumptions
have to be made. These assumptions are presented in Supplementary Note 4, Section 1. We then discuss, in
Supplementary Note 4, Section 2, which variables—input and latent—we choose to be linearly decodable by
downstream populations, and, in Supplementary Note 4, Section 3, express the adiabatic observer model in terms of
these variables. For performing the required computations on these variables, we will extend the ideas developed in
Beck et al. [12], in Supplementary Note 4, Section 4, to a systematic theory of neural integration of high-dimensional
linear and quadratic differential equations. In Supplementary Note 4, Section 5, we will apply the theory to derive a
rate-based recurrent neural network model for online motion structure inference. Finally, in Supplementary Note 4,
Section 6, we introduce—as an example for the computer simulations—a neural encoding model of input variables
that captures many properties of middle temporal visual area (MT) while staying mathematically tractable with
regard to its computational function.

4.1 Aims and assumptions
We view our network model as a starting point for an experiment–theory loop. Some neural response properties will
be rather general and could be tested in experiments directly. Others will be more specific and could guide targeted
experiments. In any case, we expect that many aspects of this initial model will be revised and refined in the process.

For the model, we make three assumptions:

• Rate-based network. We assume that all information is conveyed in the neuronal firing rates. Thus, no exact
spike-timing is considered. Further, we will allow negative firing rates—think of them as negative deviations
from a baseline value.

• Linear and quadratic operations. We assume that neurons can integrate their synaptic inputs in two ways:
linearly and quadratically. Specifically, we assume that the dynamics of the firing rate of a neuron (or small
population) i takes the form,

τi ∂tri =−ri + fi(wT
i r + rT Q(i) r + bi) , (53)

with time constant τi, a potentially non-linear activation function fi, weight vector wT
i , quadratic interaction

matrix Q(i), and bias bi. In the main text, we had omitted the (per-neuron) bias, bi, because it can be absorbed
in fi. For the following formal derivation, we make the bias explicit for clarity, and, as we will see, this leads to
activation functions, fi, which are different only on a per-population basis. Eqn. (53) is a standard form for
rate-based network models [13], and quadratic interactions are commonly used in neural network modeling
[12, 14].

• Linear decoding of task-relevant variables. A subset of variables, especially those which are relevant for
actions and decision making, can be read out linearly by downstream populations. We will specify the subset
of variables in the next section.
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4.2 Linearly decodable variables
Inspecting eqn. (43) and eqn. (44), an elegant decomposition into basic operations (that is, addition, linear and
quadratic multiplication) employs the following variables:

µt , λ2
t ,

vt

σ2
obs

,
1

σ2
obs

,
(

vt

σ2
obs
− C µt

σ2
obs

)
︸ ︷︷ ︸

Pred.err.εt

, fΣ(λ
2
t ) . (54)

The first three variables, µt, λ2
t , vt, are directly related to the task of decomposing visual scenes. Further, we include

the observation noise, 1/σ2
obs, as an input variable (rather than treating it as a constant) to accommodate the extended

theory presented in Supplementary Note 3, Section 1, permitting the network to handle, for instance, transient
occlusion of objects. Of course, the value of σ2

obs could also be a constant in the network. The prediction error,
εt, is an auxiliary variable to restrict the complexity of operations to being at most quadratic. (We will see in
Supplementary Note 4, Section 4 that the computational complexity is directly inherited by the neural dynamics.)
Finally, the posterior variance, fΣ(λ

2
t ), which is a hallmark of Bayesian computation, is required for motion structure

decomposition and, potentially, for Bayesian decision making.
The variables listed in eqn. (54) are assumed to be linearly decodable, that is, they can be read out from neural

activity (at the example of µt) via
µt = Aµ rt , (55)

with some readout matrix Aµ. The other variables maintain corresponding matrices Aλ, Av, Aσ, Aε, and AΣ,
respectively. Here, rt are the instantaneous firing rates of a population of neurons that encode µt. Multiple variables
can be encoded by the same neural population.

4.3 Motion structure inference via at-most quadratic operations
First, we observe that eqn. (43) and eqn. (44) almost exclusively contain linear and quadratic terms when expressed
in the variables of eqn. (54):

∂tλ
2
t =−

1
τλ

λ2
t +

2
D τs τλ (

2
D + ν + τλ

τs
)

(
τλ

τs

D

∑
d=1

µt,d � µt,d +
D τλ

τs
fΣ(λ

2
t ) +

τs
2 νκ2

)
, (56)

∂tµt =−
1
τs

µt + fΣ(λ
2
t ) � CT εt , (57)

∂tεt =−
1
τε

(
εt −

vt

σ2
obs

+
1

σ2
obs
� Cµt

)
=− 1

τε
εt +

1
τε

vt

σ2
obs
− 1

τε

1
σ2

obs
� Cµt , (58)

where we have made elementwise multiplication explicit via the �-operator, and moved the prediction error, εt,
into a separate dynamic equation with time constant τε. For this separation to maintain faithful results, we require
that τε < τs, such that the prediction error can react to changes in µt. The only variable in eqn. (54) that cannot be
calculated within this scheme is fΣ(λ

2), which contains a square root, and, thus, has to be addressed separately,
below. The variables vt/σ2

obs and 1/σ2
obs are the input variables that are fed into the system.

4.4 Neural dynamics for integrating linear and quadratic differential equations
We will now establish how linear and quadratic dynamics of latent variables, such as eqn. (56) – (58), can be integrated
in neural space. What follows is basically a clearly structured generalization of the ideas presented in Ref. [12].

Notation in the algorithmic domain. Inevitably, some notation has to be introduced for addressing all of the above
dynamics in both the algorithmic domain (i.e., dynamics of variables) and the network domain (i.e., dynamics of neuronal
firing rates). To keep the presentation general, we will adopt variable-dynamics of the generic form

∂tz = yQx + Wx + b with (yQx)i
def
= ∑

j,k
Qijkyjxk . (59)

Here, z, y, and x denote vector-valued variables. Further, b is a vector-valued additive constant, W a matrix, and Q a
3rd-order tensor, for which we establish the notation of small, capital, and underlined capital letters, respectively.

23/29



Note that expressions with elementwise multiplication are covered by the tensors. For instance, using Einstein
summation convention,

(y� x)i = yi xi = δijδikyj xk = (yQx)i with Qijk = δijδik , (60)[
W1 (y�W2x)

]
i = W1

ij(y�W2x)j = W1
ij(yjW2

jkxk) = (yQx)i with Qijk = W1
ijW

2
jk , (61)[

(W1y)� (W2x)
]

i = W1
ijyjW2

ikxk = (yQx)i with Qijk = W1
ijW

2
ik . (62)

Thus, all algorithmic dynamics in eqn. (56) – (58) are of form eqn. (59).

Notation in the network domain. We now turn to the question of how neuronal populations can calculate dynamics
of the form in eqn. (59) when the involved variables are linearly decodable, that is, when z=Az rz. Refining the
notation in eqn. (55), we will make explicit which population rz encodes variable z and suppress the time dependence
in rz

t . Again, we emphasize that differently denoted populations, e.g., rz and rx, can and often will refer to the same
population—the refined notation simply gives us the flexibility to cover various cases.

Following [12], we will further make use of what is called the adjoint matrix Az † of matrix Az, which is character-
ized by Az Az †= I. Such right-inverse, albeit not unique, always exists if the rows of Az are linearly independent,
which is commonly fulfilled when the number of neurons exceeds the number of variables. If variables z and x
are encoded by the same populations of neurons, we further require that Az Ax †=Ax Az †=0. As long as these
orthogonality conditions are satisfied, the exact form of the matrices A is arbitrary, from a mathematical point of
view.

As we will show in the next paragraph, quadratic, linear, and constant terms in the algorithmic domain, eqn. (59),
translate one-to-one into quadratic, linear and constant terms in the network domain. We therefore establish the
notation Q, W , and b (with an overbar) to refer to 3rd-order tensors, matrices and biases in the neural domain,
respectively. These are exactly the function arguments that we had deemed feasible in eqn. (53) (there introduced
without the overbar).

Neural dynamics. The neural dynamics for implementing each of the computations in eqn. (59) are as follows.

Quadratic terms: ∂tz = yQx is implemented via

∂trz = ryQ rx with Qijk
def
= Az †

iα Qαβγ Ay
βj A

x
γk , in short: Q def

= Az † (QAy Ax) . (63)

Proof:

(∂tz)i = (∂t Azrz)i = (Az∂trz)i = Az
ij(r

yQrx)j = Az
ijQjklr

y
k rx

l = Az
ij A

z †
jα Qαβγ Ay

βk Ax
γlr

y
k rx

l = δiαQαβγyβxγ = (yQx)i .
(64)

Linear terms: ∂tz = Wx is implemented via

∂trz = W rx with W = Az †WAx . (65)

Proof:
∂tz = Az∂trz = AzWrx = Az Az †WAxrx = Wx . (66)

Constant terms: ∂tz = b is implemented via

∂trz = b with b = Az †b . (67)

Proof:
∂tz = Az∂trz = Azb = Az Az †b = b . (68)

Linearity: Neural dynamics for linear combinations, e.g., ∂tz = W1x + W2y are simply the sum of the individual

terms, e.g., ∂trz = W1rx + W2ry. The proof follows directly from the linearity of Az.

Shared populations: Neural dynamics of variables encoded by the same population, e.g., r=rz=rx, do not interfere.
The proof follows from the orthogonality Az Ax †=Ax Az †=0 and from observing that every term in the above neural
dynamics is led by an adjoint matrix Az † or Ax †. Therefore, neural dynamics inducing changes in z do not convey
any changes in x, and vice versa.
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Supplementary Fig. 10 | Network model for motion struc-
ture inference. The network is composed of three neuronal
populations. The input population, rinp, encodes the input
variables, 1/σ2

obs and v/σ2
obs, as a distributed code. The

distributed population, rdis, encodes the latent variables, λ2,
µ and ε, as a distributed code. The one-to-one population,
r1-to-1, encodes the latent posterior uncertainty, fΣ(λ

2), as a
one-to-one code. All of these variables can be read out linearly
from the network firing rate, at any time. Synaptic connections
within and between populations mediate linear (indicated as
arrows) and quadratic (indicated as “Quad” boxes) interactions.
The non-linear function fΣ is implemented by a leaky integrate-
and-fire type response (indicated by the half-circle).
Overall, the network implements eqn. (56) – (58) of the algo-
rithmic domain and, thereby, emulates the adiabatic observer
model given by eqn. (43) + (44).

4.5 Recurrent network model for online motion structure inference
Supplementary Note 4, Section 4 provides us with a straight-forward recipe for implementing eqn. (56) – (58) in a
neural network. To keep the network as general as possible, the input variables, 1/σ2

obs and v/σ2
obs, are encoded by

an input population, rinp. The latent variables, λ2, µ and ε, are encoded by a distributed population, rdis. Both the input
and distributed population employ a distributed code with arbitrary readout matrices A obeying the orthonormality
conditions stated in Supplementary Note 4, Section 4. For the distributed population, the activation function, fi, in
eqn. (53) is simply the identity function. We refrain from restating the exact neural dynamics here because they are
obtained directly by translating the terms in eqn. (56) – (58) into their neural counterparts by means of eqn. (63), (65),
and (67).

For a functioning network model, however, two pieces are missing: the input code, and handling of the func-
tion fΣ(λ

2
t ) as was promised in Supplementary Note 4, Section 3. These two pieces are discussed next.

Connecting the input. The input is fed into the network externally and is thus by definition not controlled by internal
dynamics of the network. Nonetheless, the activity rinp(v/σ2

obs, 1/σ2
obs), which is a function of the input variables,

is required to support linearly decoding v/σ2
obs and 1/σ2

obs via known readout matrices Av and Aσ. Note that no
adjoint matrices are required for the input. While any valid input code can be used in our generic network model,
finding activation functions grounded in biological experiments together with matching readout matrices is typically
non-trivial. We present one such input model, which resembles fundamental response properties of area MT, in
Supplementary Note 4, Section 6.

Handling fΣ(λ
2
t ). The non-linearity of the function fΣ(λ

2
t ), given by eqn. (42), prohibits a direct incorporation

of the effect of λ2 on its dependent variables in eqn. (56) and eqn. (57), within the computational framework of
Supplementary Note 4, Section 4. The core reason is that the linear readout Aλ rdis does not commute with the
square-root function. Yet, it turns out that fΣ(λ

2
t ) can be incorporated into the network model quite easily owing to its

simple functional form. Since fΣ keeps all motion components separate, fΣ(λ
2
m) = constm · (−1 +

√
1 + constm λ2

m),
we can employ a dedicated population, r1-to-1, using a one-to-one coding model, which assigns one neuron (or small
sub-population) to each component of the posterior variance:

r1-to-1,m =
1

AΣ
mm

fΣ(Aλ
m?rdis) . (69)
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Here we have used that λ2
m = Aλ

m?rdis can be read out linearly from the population’s activity. The coefficient AΣ
mm

scales the firing rate of r1-to-1,m. This leads to a neurally plausible activation function of r1-to-1: In Supplementary
Fig. 9, replace λ2

m by the “input current” Aλ
m?rdis on the x-axis, and fΣ by r1-to-1 on the y-axis. This is reminiscent

of the firing response of leaky integrate-and-fire neurons or, more generally, Type I neurons, as a function of the
input current. Finally, we can read out fΣ linearly from r1-to-1 via readout matrix AΣ=diag

[
(AΣ

11, .., AΣ
MM)

]
, thereby

allowing us to apply the formalism of Supplementary Note 4, Section 4 to fΣ(λ
2) (which acts as a variable).

In the above argumentation, we have made two simplifying assumption. First, we have assumed an instantaneous
response for r1-to-1 instead of the low-pass filtered response of eqn. (53). Since fΣ varies only on the long time scale τλ,
eqn. (69) could easily be replaced by a low-pass filtered version with fi := fΣ/AΣ

mm being the neurons’ activation
function in eqn. (53). Secondly, we notice that, strictly, fΣ depends not only on λ2, but also on 1/σ2

obs. While the
quadratic interaction between these variables, as expressed by eqn. (42), is covered by the theory, we decided to
reduce the complexity of the network model by assuming a fixed default value for σ2

obs in the computer simulations.
Again, an extension respecting the explicit σ2

obs-dependence would be straight-forward.

The complete network model. Plugging all of the components together, we obtain the network model shown in
Supplementary Fig. 10. This network emulates the adiabatic observer model given by eqn. (43) + (44).

4.6 Neural coding of the input: an example for area MT
While we aimed to leave the neural code for all latent variables as generic as possible in the network examples, we
specify an input code that respects known response properties of area MT. In the following, we present the tuning
functions for the input neurons which are derived from models and properties in the literature on area MT [15–17].
Their most important computational property is that they support linear readout of v/σ2

obs and 1/σ2
obs in Cartesian

coordinates.
We will proceed in three steps. First, we define the tuning functions in polar coordinates since response properties

are commonly presented in this coordinate system in the experimental literature. Second, we state some helpful
mathematical properties of the proposed tuning functions. Third, we provide the readout matrices Av and Aσ and
demonstrate how they accurately decode the relevant variables, v/σ2

obs and 1/σ2
obs.

The tuning function in polar coordinates. Commonly, MT tuning is characterized in polar coordinates because the
tuning function becomes separable, i.e., it factorizes into a product of functions over different variables. Owing to
the retinotopic organization of MT, we consider for the remainder of this subsection a local population of neurons
sharing the same spacial receptive field. Those neurons are indexed, as shown in Supplementary Fig. 11 (left),
by nα=1..Nα and nρ=1..Nρ according to their preferred direction, µα, and speed (absolute value of velocity), µρ,
respectively. We use the following tuning function in response to a stimulus with direction α ∈ [0, 2π), speed ρ≥ 0,
and observation noise σ2

obs:

f (α, ρ, σ2
obs; nα, nρ) = fσ(σ

2
obs) · fα(α; nα) · fρ(ρ; nρ) (70)

with fσ(σ
2
obs) =

ψ

σ2
obs

, (71)

fα(α; nα) =
dα

2π I0(κα)
eκα cos(α−dα nα) , (72)

fρ(ρ; nρ) =
µ′ρ(nρ)√

2πσ2
ρ µρ(nρ)

e
− (log(ρ)−log(µρ(nρ)))

2

2σ2
ρ . (73)

Example tuning functions are shown in Supplementary Fig. 11 (right). Eqn. (70) is composed of sub-functions for
the noise fσ, motion direction fα, and motion speed fρ, which employ a range of parameters: The overall (maximum)
firing rate is scaled by ψ. The angle between cells’ preferred direction is dα=2π/Nα, such that neuron nα’s preferred
direction is dα nα. The directional tuning width is described by κα (formally, κα is the precision parameter of a
von-Mises-distribution density function, and I0(κα) is the modified Bessel function of order 0 for normalization).
Neuron nρ’s preferred speed is given by function µρ(nρ), with µ′ρ denoting the function’s derivative. Finally, the
width of speed tuning is controlled by σ2

ρ . Let us briefly discuss how eqn. (70) captures known properties of MT:
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Supplementary Fig. 11 | Tuning functions of MT neurons. Left: The tuning of MT neurons, in response to a stimulus with
direction α, speed ρ and observation noise σobs, is separable in polar coordinates. In a local population, the neurons’ preferred
velocity tuning covers directions, µα, uniformly, while the density of neurons tuned to speed, µρ, decreases for higher speed.
Note that all quantities refer to a local coordinate system centered at the receptive field (RF) center. So, the coordinates here
are not to be confused with the coordinate system in Supplementary Fig. 8 which describes RF locations. Right: Tuning
function according to eqn. (70) for four example neurons. Tuning centers and maximum firing rates are given in the axes titles.
Parameters (using Python indexing, i.e., nρ=0, .., Nρ−1): ψ=0.1, σ2

obs=(0.05/3)2, Nα=16, Nρ=12, µρ(nρ) = ρmin + dρ n1.25
ρ ,

dρ = (ρmax − ρmin)/(Nρ − 1)1.25, ρmin=0.1, ρmax=8.0, κα=1/0.352, σ2
ρ =0.352.

• Neurons are tuned to speed (absolute value of velocity) and direction (almost entirely into only one direction,
not the opposite direction).

• Direction tuning is commonly described by a von Mises density function. Preferred directions cover the circle
roughly isotropically, here via dα nα.

• Speed tuning can be described by a log-normal function of the speed ρ. The density of speed tuning centers in
MT has been reported to decrease for larger speeds, which can be captured by the function µρ(nρ).

• Activity is modulated by contrast (via σ2
obs), with lower contrast (higher noise) attenuating the overall firing

rate.

We make the simplifying assumptions that (i) all neurons have the same firing rate scaling factor ψ, and (ii) that
the tuning widths, given by κα and σ2

ρ , are “not too wide”. The meaning of “not too wide” will become clear in the
following mathematical consideration.

Mathematical properties of the tuning function. We next discuss some useful properties of the components of the
above tuning function. First, we note that fα and fρ have the form of known probability density functions over the
neuron indices nα and nρ, respectively. In particular, they integrate to one in the limit of many, narrowly spaced
neurons: ∫ 2π

dα

0
fα(α; nα)dnα =

∫ 2π

0
eκα cos(α−dα nα)/(2π I0(κα))d(dαnα) = 1 (74)

and
∫ ∞

0
fρ(ρ; nρ)dnρ =

∫ ∞

0

1√
2πσ2

ρ µρ

e
− (log(ρ)−log(µρ))

2

2σ2
ρ dµρ = 1 . (75)
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Supplementary Fig. 12 | Linear readout of input statistics from population responses. Left: Population response when
encoding four example stimuli. The population consists of 192 neurons with the parameters given in Supplementary Fig. 11. For
clarity, only neurons with µρ < 3.5 are shown. Right: Linear readout of 1/σ2

obs, vx/σ2
obs and vy/σ2

obs from the population activities
on the left via weights given by eqn. (78). Shown are, in polar coordinates, the stimulus ground truth (black) and the estimate by
the linear readout (red). The estimated uncertainty is provided is the axes titles.

Furthermore, the distributional forms give rise to nice moments w.r.t. the tuning centers dα nα and µρ(nρ):

〈ei dαnα〉 fα
= I1(κα)

I0(κα)
eiα large κα≈ eiα =

(
cosα
sinα

)
(76)

and 〈µρ(nρ)〉 fρ
= ρeσ2

ρ /2 small σρ

≈ ρ . (77)

We now understand how narrow (i.e., “not too wide”) tuning functions enable reading out the encoded direction,
α, and speed, ρ: large κα and small σ2

ρ afford the approximations in eqn. (76) and (77). Further, the mathematical
relations highlight that κα and σ2

ρ could be modulated by the observation noise σ2
obs without changing the ability to

encode/decode the input.

Linear readout of input statistics. With the above mathematical properties at hand, we identify matrices Aσ and Av

for linear readout:

Aσ
k,(nα ,nρ)

=
1
ψ

and Av
k,(nα ,nρ)

=
1
ψ

(
cosdαnα

sindαnα

)
µρ(nρ) , (78)

because reading out with these matrices from the MT-population of the k-th observable yields:∫ ∫
Aσ

k,(nα ,nρ)
f (αk, ρk, σ2

obs,k; nα, nρ)dnα dnρ =
1

σ2
obs,k

(79)

∫ ∫
Av

k,(nα ,nρ)
f (αk, ρk, σ2

obs,k; nα, nρ)dnα dnρ =
ρk

σ2
obs,k

(
cosαk
sinαk

)
=

(
vx/σ2

obs,k
vy/σ2

obs,k

)
. (80)

Examples of the population response to four motion stimuli is shown in Supplementary Fig. 12 (left) for a population
of 192 neurons. The tuning centers span 12 radii (“speed”) and 16 angles (“direction”). In Supplementary Fig. 12
(right), the resulting linear readout (red) is shown alongside the ground truth (black). Even the coarse coverage of the
stimulus space by 192 neurons is sufficient for a faithful reconstruction of the stimulus. As an interesting observation,
while neurons tuned to higher speeds have wider tuning curves, this does not imply that their activity would encode
heightened uncertainty: σobs is identical in all of the examples in Supplementary Fig. 11 and Supplementary Fig. 12.

In summary, we have identified with eqn. (70) an MT tuning function that supports linear readout of the variables
v/σ2

obs and 1/σ2
obs via matrices Av and Aσ.
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