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Interacting with volatile environments stabilizes
hidden-state inference and its brain signatures
Aurélien Weiss 1,2,3✉, Valérian Chambon 2,4, Junseok K. Lee 1,2, Jan Drugowitsch5 &

Valentin Wyart 1,2✉

Making accurate decisions in uncertain environments requires identifying the generative

cause of sensory cues, but also the expected outcomes of possible actions. Although both

cognitive processes can be formalized as Bayesian inference, they are commonly studied

using different experimental frameworks, making their formal comparison difficult. Here, by

framing a reversal learning task either as cue-based or outcome-based inference, we found

that humans perceive the same volatile environment as more stable when inferring its hidden

state by interaction with uncertain outcomes than by observation of equally uncertain cues.

Multivariate patterns of magnetoencephalographic (MEG) activity reflected this behavioral

difference in the neural interaction between inferred beliefs and incoming evidence, an effect

originating from associative regions in the temporal lobe. Together, these findings indicate

that the degree of control over the sampling of volatile environments shapes human learning

and decision-making under uncertainty.
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Making accurate decisions in an uncertain environment
requires inferring its properties from imperfect
information1,2. When categorizing an ambiguous sti-

mulus, this “hidden-state inference” process consists in identify-
ing the generative cause of sensory cues. By contrast, when
foraging rewards, inference concerns the expected outcomes of
possible courses of action. A constitutive, yet rarely considered
difference between these two forms of inference lies in the degree
of control over information sampling conferred to the decision-
maker. Indeed, cue-based inference relies on the presentation of
information to an observer interpreting a relevant property of its
environment (here, the category of the presented stimulus),
whereas outcome-based inference relies on the active sampling of
information by an agent interacting with its environment to
achieve a particular goal (here, maximizing rewards).

Thus, it remains unclear whether humans learn and decide
differently based on the same uncertain information when the
information in question corresponds either to external cues or to
outcomes of a previous decision. A formal comparison between
cue-based and outcome-based inference requires a shared com-
putational framework that describes them. Yet, canonical
“sequential-sampling” models of sensory evidence accumulation
are cast in terms of a continuous random walk process spanning
hundreds of milliseconds3,4, whereas “reinforcement learning”
models of action valuation rely on discrete updates of expected
outcomes over much longer timescales5,6. Another challenge for a
direct comparison between the two types of inference comes from
the large differences in the experimental paradigms developed
to study perceptual (cue-based) decisions and reward-guided
(outcome-based) decisions. In particular, perceptual tasks
increase uncertainty by decreasing the signal-to-noise ratio of
presented stimuli—e.g., the motion coherence of random-dot
kinematograms7,8. By contrast, reward-guided tasks increase
uncertainty by decreasing the predictability of action-outcome
contingencies—e.g., differences in reward probability associated
with possible actions9,10. Finally, a recently developed paradigm
that compares active and passive sampling confers intrinsic
benefits to active sampling through improved information
gathering11,12, thereby rendering comparisons between cue-based
and outcome-based inference difficult.

To overcome these challenges, we designed and tested an
adaptive decision-making task based on reversal learning13,14 and
a computational framework based on Bayesian inference15–17, in
which cue-based and outcome-based inference can be framed and
compared in tightly matched conditions. We recorded magne-
toencephalographic (MEG) signals to identify the neural repre-
sentations and dynamics supporting the two types of inference
and their differences. We obtained converging behavioral and
neural evidence that interacting with uncertain information sta-
bilizes hidden-state inference, as if humans perceive volatile
environments as more stable when interacting with uncertain
outcomes than when observing equally uncertain cues.

Results
Reversal learning task. Healthy adult participants (N= 24) per-
formed a reversal learning task based on visual stimuli, which we
framed either as cue-based or outcome-based inference, in two
conditions corresponding to different blocks of trials. In both
conditions, participants were asked to track a hidden state of the
task, which alternates occasionally and unpredictably between two
discrete values (Fig. 1). Stimuli corresponded to oriented bars
drawn from one of two overlapping probability distributions
(categories) centered on orthogonal orientations, each associated
with a color (Fig. 1a). Each trial consisted of a sequence of two to
eight stimuli after which participants provided a response

regarding the hidden state being tracked (Fig. 1b). In the cue-
based (Cb) condition, participants were instructed to monitor the
deck (category A or B) from which presented cards (oriented
stimuli) are drawn (Fig. 1c). In the outcome-based (Ob) condition,
the same participants were instructed to select the action (the left
or right key press), which draws cards from a target deck
(counterbalanced across blocks). As indicated above, the hidden
state (the drawn deck in the Cb condition, or the target deck-
drawing action in the Ob condition) reversed occasionally and
unpredictably between trials, thereby requiring participants to
adapt their behavior following each reversal.

Importantly, this experimental design allowed for an exact
match of all task parameters (including stimulus characteristics,
response parameters, and presentation times) and all computa-
tional variables (predicted by Bayesian inference) between Cb and
Ob conditions. In particular, the amount of information provided
by each stimulus sequence was strictly identical between
conditions (Supplementary Fig. 1a; see “Methods” for analytical
derivations). Their key difference is that the drawn category
was independent of participants’ previous response in the Cb
condition, whereas it depended on participants’ previous
response (e.g., A if left or B if right) in the Ob condition.

Slower reversal learning during outcome-based inference.
Neither response accuracy—i.e., the fraction of responses consistent
with the hidden state (Cb: 81.7 ± 0.7%, Ob: 81.9 ± 0.8%,
mean ± SEM, paired t-test, t23= 0.3, p= 0.784)—nor mean
response times (Cb: 594.3 ± 51.6ms, Ob: 585.3 ± 55.5ms, t23=
−0.5, p= 0.648) differed significantly across conditions. Despite
this match, we found a selective difference in reversal learning
between Cb and Ob conditions (Fig. 2a). Fitting response reversal
curves by a saturating exponential function revealed a longer
reversal time constant in the Ob condition (Fig. 2b; Cb: 0.82 ± 0.10,
Ob: 1.28 ± 0.12, t23= 8.0, p < 0.001), as well as a higher asymptotic
reversal rate (Cb: 86.2 ± 1.2%, Ob: 90.8 ± 1.2%, t23= 5.2, p < 0.001).

To characterize the origin of these learning differences, we
constructed response repetition curves—i.e., the probability of
repeating a previous response as a function of the evidence
provided by the intervening sequence in favor of the previous
response (see “Methods”). Positive evidence indicates evidence
consistent with the previous response, whereas negative evidence
indicates evidence conflicting with the previous response. Plotting
these response repetition curves revealed a clear leftward shift in
the Ob condition (Fig. 2c). Fitting these curves using a sigmoid
function showed a selective increase in the point of subjective
equivalence (PSE)—i.e., the amount of conflicting evidence
required to switch more often than repeat the previous response
(Fig. 2d; Cb: 1.03 ± 0.10, Ob: 1.43 ± 0.09, t23= 7.7, p < 0.001).
Neither the slope of response repetition curves—indexing the
sensitivity of responses to evidence (Cb: 2.14 ± 0.16, Ob: 2.10 ±
0.17, t23=−0.2, p= 0.846)—nor their lower asymptote—reflect-
ing the small fraction of evidence-independent repetitions
(Cb: 3.1 ± 0.9%, Ob: 6.8 ± 1.5%, t23= 2.0, p= 0.056)—differed
significantly between conditions. Together, these results indicate
slower reversal learning in the Ob condition, caused by a larger
amount of conflicting evidence required to reverse the previous
response. This increased PSE in the Ob condition was present
(and equally strong) on the first trial following each reversal of
the hidden state, where evidence maximally conflicts with the
previous response and did not depend on the number of stimuli
in the sequence (Supplementary Fig. 2).

Lower perceived hazard rate during outcome-based inference.
The tight match between Cb and Ob conditions allowed us to
model human behavior in the two conditions by the same
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Bayesian inference process (Fig. 3a), controlled by two parameters
as follows: (1) the perceived hazard rate h—i.e., the subjective
rate of reversals of the hidden state15—and (2) the inference noise
σ—i.e., the SD of internal noise in the processing of each stimulus
sequence17. On each trial, the model updates its belief regarding
the current value of the hidden state by combining its prior belief,
before seeing the new sequence of stimuli, with the evidence
provided by each stimulus in the new sequence (see “Methods”).
Given that the hidden state st alternates between two possible
values s1 and s2, beliefs can be expressed as log-odds,
log p st ¼ s1

� �
=p st ¼ s2
� �� �

: the sign of the log-odds belief indi-
cates whether s1 or s2 is more likely, whereas the magnitude of the
log-odds belief indicates the strength of the belief in favor of the
more likely hidden state. Each update of the (log-odds) belief is
corrupted by internal noise of SD σ. A fraction of the resulting
posterior belief is then carried over as prior belief for the next trial
as a function of the perceived hazard rate h: the larger the per-
ceived hazard rate, the smaller the prior belief at the beginning of
the next trial.

To quantify the (sub)optimality of human performance, we
first simulated responses from the Bayesian inference model with
optimal parameters15—i.e., the true hazard rate (0.125) and exact
(noise-free) inference. The response accuracy of the optimal

model (88.4 ± 0.3%), identical by construction across the
two conditions, substantially exceeded human performance
(Cb: t23= 9.3, p < 0.001, Ob: t23= 7.8, p < 0.001). To characterize
the origin of human suboptimality and the nature of observed
differences between Cb and Ob conditions, we then fitted the
perceived hazard rate and the amount of inference noise to
human behavior in each condition using particle Monte Carlo
Markov Chain (MCMC; see “Methods”).

Consistent with previous work17, group-level analyses showed
a substantial amount of inference noise, which did not differ
across conditions (Fig. 3b; Cb: 0.512 ± 0.024, Ob: 0.550 ± 0.033,
t23= 1.5, p= 0.141). Beyond inference noise, we ruled out the
presence of a stochastic “softmax” choice policy in both
conditions by Bayesian model selection (BMS; Supplementary
Fig. 1b–d; Cb: exceedance p < 0.001, Ob: exceedance p < 0.001).
Together, these results suggest that human suboptimality arises in
both conditions from inference noise, whose magnitude corre-
lated significantly between conditions across participants (Pear-
son’s r= 0.630, d.f.= 22, p= 0.001). Plotting participants’
psychophysical kernels (Supplementary Fig. 1e) confirmed that
most of the inference noise reflects genuinely random variability
rather than stereotyped (e.g., leaky) inference (Supplementary
Fig. 1f)—consistent again with previous work17.

Fig. 1 Reversal learning task and conditions. a Generative stimulus distributions used for the two categories A and B. Stimuli correspond to bars of
orientations θ1; ¼ ; θn

� �
drawn from one of two color-labeled categories, associated with overlapping probability density functions centered on orthogonal

orientations. b Trial description. Each trial t consists of a sequence of two to eight stimuli θ1; ¼ ; θn
� �

drawn from one of the two categories, presented at
an average rate of 2 Hz, after which participants provide a response rt (the left or right key press) regarding the hidden state of the task being tracked.
c Graphical description of cue-based and outcome-based conditions. Left: in the cue-based (Cb) condition, participants are instructed to monitor the deck
(category A or B) from which presented cards (oriented stimuli) are drawn. This hidden state st of the task alternates occasionally and unpredictably
between trials. In this example, the hidden state st reverses at the end of trial t. Right: in the outcome-based (Ob) condition, the same participants are
instructed to select the action (the left or right key press), which draws cards from a target deck. The deck drawn at trial t depends not only on the hidden
state st but also on the response rt�1 provided at the previous trial. As in the cue-based condition, the hidden state st (the target deck-drawing action in this
case) alternates occasionally and unpredictably between trials. In this example, the hidden state st reverses at the end of trial t.
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By contrast, comparing perceived hazard rates between
conditions revealed a significant decrease in the Ob condition
(Fig. 3c; Cb: 0.191 ± 0.022, Ob: 0.115 ± 0.015, t23=−7.7, p <
0.001). This difference offers a computational account for the
increased PSE in the Ob condition. Indeed, the decrease in
perceived hazard rate in the Ob condition boosts prior beliefs by
42% (Fig. 3d), thereby requiring more conflicting evidence to
reverse a previous response. Additional analyses confirmed that a
larger fraction of the posterior belief is carried over to the next
trial in the Ob condition, consistent with a lower perceived
hazard rate but at odds with an increased response repetition bias
(Supplementary Fig. 3).

This difference in perceived hazard rate between conditions
makes a testable prediction: participants should be more accurate in
the Ob condition in more stable environments where reversals are
rare and more accurate in the Cb condition in more volatile

environments where reversals are frequent (Fig. 3e). Unbeknownst
to participants, we varied the true hazard rate across blocks
between 0.083 (more stable) and 0.167 (more volatile). As
predicted, participants were more accurate in the Ob condition in
more stable blocks (t23= 3.4, p= 0.002) and more accurate in the
Cb condition in more volatile blocks (t23=−2.5, p= 0.020,
interaction: F1,23= 20.2, p < 0.001). This interaction is driven by
the fact that participants did not adapt their perceived hazard rate
to these fine, uncued changes in true hazard rate (Supplementary
Fig. 4a, b), with perceived hazard rates closer to the true hazard rate
for the Ob condition in more stable blocks and for the Cb condition
in more volatile blocks. Importantly, the decrease in perceived
hazard rate in the Ob condition was highly similar for participants
with more stable inference (i.e., low perceived hazard rates) and
participants with more volatile inference (i.e., high perceived hazard
rates) across conditions (Supplementary Fig. 4c, d). This pattern of

Fig. 2 Reversal learning behavior and psychometric fits. a Response reversal curves. Fraction of hidden state s2 reported behaviorally (y axis) in the four
trials preceding (left) and following (right) a reversal from s1 to s2 (x axis). The thin dotted line indicates the position of the reversal. Dots indicate the
observed data (means ± SEM, n= 24 participants), whereas lines and shaded error bars indicate best-fitting saturating exponential functions (means ±
SEM, n= 24 participants). b Best-fitting parameters of saturating exponential functions in the cue-based and outcome-based conditions. Black dots and
error bars indicate group-level means ± SEM, whereas colored dots indicate participant-level estimates (n= 24 participants). Left: the reversal time
constant is longer and the asymptotic reversal rate is higher in the outcome-based condition. Right: the two parameters correlate positively across
participants. The thin dotted line indicates the best-fitting regression line and the shaded area its 95% confidence interval. c Response repetition curves.
Fraction of response repetitions (y axis) as a function of the evidence provided by the intervening sequence in favor of the previous response (x axis,
expressed as logLR). Positive evidence indicates evidence consistent with the previous response, whereas negative evidence indicates evidence conflicting
with the previous response. The thin dotted line indicates perfectly uncertain (null) evidence. Dots indicate the observed data (means ± SEM, n= 24
participants), whereas lines and shaded error bars indicate best-fitting sigmoid functions (means ± SEM, n= 24 participants). d Best-fitting parameters of
sigmoid functions in the cue-based and outcome-based conditions. Left: the PSE is increased in the outcome-based condition, whereas the sensitivity to
evidence is matched across conditions. Right: the two parameters correlate slightly negatively across participants. Significant effect at ***p < 0.001; n.s., a
nonsignificant effect (paired two-sided t-tests, d.f.= 23, no correction for multiple comparisons). The error band indicates the 95% confidence interval for
the regression line fitted using ordinary least squares. Source data are provided as a Source Data file.
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findings supports the conclusion that participants perceive the Ob
condition as more stable than the Cb condition, despite identical
true hazard rates.

No difference between prospective and retrospective cue-based
inference. The Cb and Ob conditions differ in the degree of
control conferred to participants over the sampling of informa-
tion (instrumental control in the Ob condition, no control in the
Cb condition), but not only. Indeed, outcome-based inference
concerns the consequences of an action, a form of “prospective”
inference, whereas cue-based inference concerns the cause of
presented stimuli, a form of “retrospective” inference. To deter-
mine whether observed differences are due to the prospective

nature of inference in the Ob condition (rather than the control
conferred to participants), we tested another group of participants
(N= 25) in two variants of the Cb condition as follows: (1) a
“retrospective” condition in which participants were asked to
report the category from which the previous stimulus sequence
was drawn and (2) a “prospective” condition in which the
same participants were asked to report the category from which
the next stimulus sequence will be drawn. Unlike the Ob condi-
tion, the prospective condition does not confer any instrumental
control to participants. However, similar to the Ob condition, this
new condition requires performing inference about the upcoming
stimulus sequence.

The contrast between retrospective and prospective conditions
did not yield significant differences in reversal learning
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(Supplementary Fig. 5a). Unlike the contrast between Cb and Ob
conditions, participants showed nearly identical reversal time
constants in the two conditions (Supplementary Fig. 5b; retro-
spective: 0.676 ± 0.100, prospective: 0.678 ± 0.131, t24= 0.1, p=
0.986). Plotting the associated response repetition curves
confirmed the absence of leftward shift in the prospective
condition (Supplementary Fig. 5c). Importantly, the amount
of conflicting evidence required to switch did not differ
between these two conditions (Supplementary Fig. 5d; retro-
spective: 0.852 ± 0.144, prospective: 1.061 ± 0.144, t24= 1.7, p=
0.109). The absence of difference between retrospective and
prospective inference in the absence of instrumental control
supports the notion that it is the presence of instrumental control
conferred to participants in the Ob condition—not the prospec-
tive nature of outcome-based inference—which triggers the
effects described above.

Neural correlates of stimulus processing across space and time.
To identify the neural representations and dynamics supporting
cue-based and outcome-based inference, we described each sti-
mulus (1440 per condition and per participant) by a set of distinct
characteristics: its orientation, its change (tilt) from the preceding
stimulus, and the strength of the evidence it provides to the
inference process. We then applied multivariate pattern analyses
to MEG signals aligned to stimulus onset, to estimate the neural
patterns, or “codes,” associated with these characteristics.
Owing to the fine temporal resolution of MEG signals and the
absence of correlation between these characteristics, we could
extract the time course of neural information processing
within the first hundreds of milliseconds following stimulus onset
(see “Methods”).

The neural coding of stimulus orientation (Fig. 4a) peaked at
120 ms following stimulus onset (jackknifed mean, Cb: 123.1 ms,
Ob: 122.4 ms), with equal precision across Cb and Ob conditions.
The neural coding of stimulus change (Fig. 4b)—defined as the
absolute tilt between the current stimulus and its predecessor in
the sequence—peaked at 220 ms following stimulus onset
(Cb: 225.7 ms, Ob: 223.3 ms), again with equal precision across
conditions. The neural coding of stimulus evidence (Fig. 4c)—
defined as the absolute tilt between the current stimulus and the
nearest category boundary—peaked around 360 ms following
stimulus onset (Cb: 357.5 ms, Ob: 378.7 ms). Unlike the two
previous characteristics, the computation of stimulus evidence
requires the mapping of stimulus orientation onto category-
defined axes, which we varied randomly across trials. Despite its

relevance for inference, the coding precision of stimulus evidence
did not differ between Cb and Ob conditions.

The neural codes of all three characteristics in MEG signals
were highly dynamic: their associated cross-temporal general-
ization matrices showed sharp diagonals (Supplementary Fig. 6).
Furthermore, the neural code of each characteristic progressed
along mostly “null” dimensions for the other two characteristics,
indicating low interference between the coding of the three
characteristics (Supplementary Fig. 7).

To assess the degree of similarity of each neural code between
Cb and Ob conditions, we performed cross-condition general-
ization analyses: we used the coding weights estimated in one
condition to compute neural predictions in the other condition
(see “Methods”). We also devised a procedure for estimating the
degree of similarity between two neural codes based on a
population of linear coding units (Fig. 5a). Applying this
procedure to the neural codes of each stimulus characteristic
indicated near-perfect similarity between Cb and Ob conditions—
i.e., no loss in coding precision when using coding weights
estimated in one condition to compute neural predictions in the
other condition (Fig. 5b). These results suggest that stimulus
processing in the Cb and Ob conditions relies on shared neural
processes.

Next, we sought to identify the cortical distribution of these
shared neural codes across conditions. For this purpose, we
estimated the cortical sources of observed MEG signals and
performed focal multivariate pattern analyses in source space
using a “searchlight” approach (see “Methods”). Due to the linear
mixing of sensor data used to reconstruct activity at each cortical
source, we could decode each stimulus characteristic better than
chance at all cortical sources (Supplementary Fig. 8). However,
the coding precision of the same characteristic varied greatly
across cortical sources and in different ways for the three
characteristics. Therefore, to increase the spatial selectivity of
obtained results, we estimated the cortical sources for which the
coding precision of one stimulus characteristic significantly
exceeds the coding precision of the other two characteristics
(Supplementary Fig. 9). This analysis of selectivity identified a
cluster in early visual cortex for stimulus orientation, peaking at
90 ms following stimulus onset (Fig. 4d). For stimulus change, the
same analysis isolated clusters in the temporo-parietal junction
and the posterior parietal cortex (PPC), peaking at 190 ms
following stimulus onset (Fig. 4e). Finally, the coding of stimulus
evidence was associated with clusters in the PPC and the lateral
prefrontal cortex (LPFC) after 400 ms following stimulus onset
(Fig. 4f). Together, these results highlight a spatiotemporal

Fig. 3 Computational modeling of behavior. a Left: graphical description of the Bayesian inference model, controlled by the perceived hazard rate h and the
inference noise σ . On each trial, the model updates its belief L regarding the current value of the hidden state st by combining its prior belief F Lt�1

� �
with

the likelihood Lt associated with the stimuli in the new sequence, resulting in the posterior belief Lt. Right top: modeled fraction of the posterior belief at the
end of trial t� 1 (x axis) carried over as prior belief at the beginning of trial t (y axis), for three values of perceived hazard rate. The larger the perceived
hazard rate, the smaller the prior belief at the beginning of the next trial. Right bottom: simulated trajectory of the prior belief at the beginning of each trial
over the course of an example block with h ¼ 1=8 and σ ¼ 0:5. The line and shaded error bar indicate the mean and SD across simulations. Vertical dotted
lines indicate reversals of the hidden state. b Left: inference noise estimates in the cue-based and outcome-based conditions (n= 24 participants). Right:
correlation between inference noise estimates in cue-based (x axis) and outcome-based (y axis) conditions (n= 24 participants). Dots and error bars
indicate posterior means ± SD obtained by model fitting. The thin dotted line shows the identity line. Inference noise estimates do not differ between
conditions. c Left: perceived hazard rate estimates in the cue-based and outcome-based conditions (n= 24 participants). Right: correlation between
perceived hazard rate estimates in cue-based and outcome-based conditions. The perceived hazard rate is significantly lower in the outcome-based
condition. Source data are provided as a Source Data file. d Left: predicted effect of perceived hazard rate (x axis) on the magnitude of prior beliefs (y axis).
Dots and error bars indicate means ± SEM. Right: predicted magnitude of prior beliefs in the cue-based and outcome-based conditions. Bars and error bars
indicate means ± SEM (n= 24 participants). e Effect of volatility on the behavioral difference between conditions. Left: evolution of the hidden state s over
the course of a more stable block (top) and a more volatile block (bottom). Right: response accuracy (data from n= 24 participants) is higher for the
outcome-based condition in more stable blocks (left), but worse in more volatile blocks (right). Significant effect at *p < 0.05, **p < 0.01, ***p < 0.001; n.s.,
a nonsignificant effect (paired two-sided t-tests, d.f.= 23, no correction for multiple comparisons).
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cascade of neural patterns involved in the processing of each
stimulus, shared across the two conditions.

Neural correlates of the interaction between evidence and
beliefs. On each trial, inference requires updating the prior belief
in the current value of the hidden state (the drawn category in the
Cb condition or the target-drawing action in the Ob condition)
with the evidence provided by each stimulus in the new sequence
(Fig. 3a). By isolating the neural patterns involved in this

interaction between incoming evidence and prior beliefs, we
sought to identify the brain signatures of the stabilization of
hidden-state inference in the Ob condition.

First, we asked how well we could decode from MEG signals
the evidence provided by each stimulus in favor of the ongoing
belief at stimulus onset. For this purpose, we estimated in each
condition the belief trajectory over the course of each sequence
based on the following: (1) the evidence provided by each
stimulus in the sequence and (2) best-fitting values for
the perceived hazard rate h and the amount of inference noise

Fig. 4 Neural correlates of stimulus processing. a Time course of neural coding of stimulus orientation from whole-brain MEG signals. Stimulus
orientation coding peaks at 120ms following stimulus onset, with equal precision across conditions. Lines and shaded error bars indicate means ± SEM.
b Time course of neural coding of stimulus change. Stimulus change coding peaks at 220ms following stimulus onset, with equal precision across
conditions. c Time course of neural coding of stimulus evidence. Stimulus evidence peaks at 360ms following stimulus onset, with equal precision across
conditions. The shaded area at 600–700ms is used as reference for the three stimulus characteristics to compute their relative coding precision expressed
as fraction of their respective maximum value. d Searchlight-based coding of stimulus orientation across the cortical surface (left: medial view, right: lateral
view). The bilateral spatiotemporal cluster found in early visual cortex (including V1), marginalized across time (cluster definition p= 0.001, cluster
statistic p < 0.001) corresponds to cortical sources for which the coding precision of stimulus orientation significantly exceeds the coding precision of
stimulus change and stimulus evidence. Inset: time course of the selectivity statistic for a cortical source in V1 (white dot). e Searchlight-based coding of
stimulus change. Change-selective clusters are found in the TPJ and the PPC. Inset: time course of the selectivity statistic for a cortical source in the TPJ
(white dot). f Searchlight-based coding of stimulus evidence. Evidence-selective clusters are found in the PPC, the LPFC, and the insula. Inset: time course
of the selectivity statistic for a cortical source in the LPFC (white dot). Source data are provided as a Source Data file.
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σ (see “Methods”). Estimated belief trajectories thus accounted for
the lower perceived hazard rate and the more stable beliefs found
in the Ob condition (Fig. 6a). Positive evidence indicates evidence
consistent with the ongoing belief, whereas negative evidence
indicates evidence conflicting with the ongoing belief.

We could decode this “consistency” variable in both conditions
over a large time window starting around 110 ms following
stimulus onset (Fig. 6b), with no significant difference between
conditions. Similar to other stimulus characteristics, the cross-
condition generalization analysis of this neural code revealed
near-perfect similarity across conditions (Supplementary
Fig. 10a). Importantly, this consistency variable assumes that
participants update their belief regarding the current value of the
hidden state after each stimulus, throughout each sequence of
stimuli—and not only when probed for a response (Supplemen-
tary Fig. 10b). Distinguishing between stimulus-level and
response-level inference schemes is not possible from behavior
alone, as their applications result in the same behavior. However,
the two inference schemes are associated with different belief
trajectories over the course of each sequence. In particular,
stimulus-level inference predicts that changes of the mind can
occur midway through a sequence, as soon as a conflicting

stimulus flips the sign of the log-odds belief. As a result, the two
inference schemes are associated with different consistency
variables, whose coding precision in MEG signals can be
compared. This comparison revealed a stronger coding of
consistency predicted by stimulus-level inference from 150 ms
following stimulus onset (Supplementary Fig. 10c; peak F1,23=
28.2, cluster-level p < 0.001). This result indicates that participants
update their beliefs regarding the current value of the hidden state
after each stimulus—at a sub-second timescale—not only when
probed for a response.

Delayed reversal of beliefs during outcome-based inference. We
reasoned that the neural coding of the consistency of evidence
with ongoing beliefs offers leverage to validate the lower perceived
hazard rate in the Ob condition. Instead of computing belief
trajectories based on the hazard rate h* fitted to participants’
behavior (which was thus lower in the Ob condition), we esti-
mated separately in each condition and for each participant the
“neural” hazard rate for which we could best decode consistency
from MEG signals—ignoring its best-fitting value obtained from
behavior (Fig. 6c). This analysis revealed a lower neural hazard
rate in the Ob condition (Cb: 0.319 ± 0.023, Ob: 0.216 ± 0.026,

Fig. 5 Estimation of neural coding similarity across conditions. a Graphical description of the coding similarity estimation procedure. Left: a population of
linear coding units zi;t represents an input scalar variable xt by a fraction of “selective’ units (zi;t ¼ βi xt þ εi;t where βi≠0) with background noise εi;t of SD σ.
A linear decoder is applied to compute an estimate x̂t of the input variable from population activity. Right: the same population of coding units represents
the same input variable x by partially overlapping selective units z in the cue-based (left) and outcome-based (right) conditions. Computing coding
precision within each condition (1–2) and across conditions (3–4, marked by gen., by using the coding weights w estimated in one condition to compute
neural predictions in the other condition) allows to quantify the degree of similarity (overlap) between selective units in the two conditions. b Estimated
coding similarities for stimulus orientation (left), stimulus change (middle), and stimulus evidence (right). Bars and error bars indicate jackknifed means ±
SEM (n= 24 participants). Dots show predicted values obtained by simulating the population of coding units with best-fitting estimates of similarity and
background noise. Bar fillings indicate the condition in which neural predictions are computed. Bar outlines indicate the condition in which coding weights
are estimated. This procedure indicates near-perfect coding similarity between cue-based and outcome-based conditions for stimulus orientation (left,
jackknifed mean: 100%), stimulus change (center, 93%), and stimulus evidence (right, 100%). Source data are provided as a Source Data file.
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Fig. 6 Belief trajectory estimation and analysis. a Estimation of belief trajectory from behavior and perceived hazard rate. Left: each horizontal strip
indicates the evolution of the hidden state s over the course of an example block. The upper strip indicates the true hidden state (with vertical dotted lines
indicating reversals), whereas the lower strips indicate inferred beliefs in the current hidden state for increasing perceived hazard rates, from 1/16 (top) to
1/2 (bottom). Belief trajectories at trial t are conditioned on observed responses up to trial t using particle filtering. Right: fraction of mid-sequence belief
reversals associated with each belief trajectory, growing with the perceived hazard rate. b Neural coding of consistency with the ongoing belief, computed
using the estimated belief trajectory based on the best-fitting perceived hazard rate in each condition (lower in the outcome-based condition). Lines and
shaded error bars indicate means ± SEM. Consistency is coded equally precisely in the two conditions. c Estimation of neural hazard rate. Relative coding
precision of consistency (y axis, expressed as the fraction of the maximum per participant and condition) as a function of perceived hazard rate (x axis).
The neural hazard rate is defined as the perceived hazard rate, which maximizes coding precision (dots and error bars indicate its mean ± SEM). Lines and
shaded error bars indicate means ± SEM. Inset: correlation matrix (r2) for consistency based on the full range of possible hazard rates. Estimation of the
neural hazard rate relies on differences between consistency variables. d Neural coding trajectories preceding response reversals (left column) and
repetitions (right column), for consistency with the belief at the beginning of the current sequence (top row) and the strength of stimulus evidence (bottom
row). Sequences leading to response reversals are associated with switches in the neural coding of consistency, not stimulus evidence, which are delayed
in the outcome-based condition. Dots and error bars indicate means ± SEM (n= 24 participants). Three stars indicate a significant effect at p < 0.001
(paired two-sided t-test, d.f.= 23, no correction for multiple comparisons). Source data are provided as a Source Data file.
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t23=−4.5, p < 0.001), thereby mirroring the lower perceived
hazard rate found in this condition.

Finally, we conducted an additional analysis to estimate belief
trajectories throughout a sequence from the neural coding of
consistency, with the idea of visualizing more stable beliefs in the
Ob condition. We reasoned that the neural coding of consistency,
defined in relation to the prior belief at the beginning of the current
sequence, should switch sign when the belief itself switches midway
through the sequence. These mid-sequence belief switches are
bound to occur in trials leading to response reversals (where
the belief at the end of the trial has opposite sign to the belief at
the beginning of the trial), but not in sequences leading to response
repetitions (where the belief at the end of the trial has the same sign
as the belief at the beginning of the trial). Furthermore, these coding
switches should occur later inside a sequence in the Ob condition
where prior beliefs are larger and thus require more conflicting
evidence to switch sign. To test these different neural predictions,
we decoded consistency at each stimulus position in a sequence
(Fig. 6d), separately for sequences leading to response reversals and
sequences leading to response repetitions. As response reversals are
less frequent than response repetitions, we used in each condition a
“common-filters” approach by applying the same coding weights
for the two types of sequences (see “Methods”).

Our predictions were corroborated by the neural data. First,
sequences leading to response reversals were associated with
coding switches: the first stimulus in the sequence was coded
positively—i.e., in direction of the belief at the beginning of the trial
(Cb: 0.049 ± 0.018, t23= 2.7, p= 0.011, Ob: 0.111 ± 0.026, t23= 4.3,
p < 0.001)—whereas the last stimulus in the same sequence was
coded negatively—i.e., in direction of the belief at the end of the
trial (Cb: −0.124 ± 0.016, t23=−7.7, p < 0.001, Ob: −0.111 ±
0.019, t23=−5.9, p < 0.001). These coding switches were not
observed during sequences leading to response repetitions: the last
stimulus was also coded positively (Cb: 0.172 ± 0.018, t23= 9.6, p <
0.001, Ob: 0.185 ± 0.016, t23= 11.5, p < 0.001). Second, coding
switches were significantly delayed in the Ob condition (jackknifed
regression of zero-crossing times, t23= 4.6, p < 0.001). Together,
these findings support the presence of more stable beliefs in the Ob
condition.

Neural dissociation between absolute and relational coding of
evidence. Neural responses to each stimulus revealed two con-
current coding schemes of the evidence provided to the inference
process as follows (Fig. 7a): (1) an “absolute” coding scheme
reflected in the strength of the evidence and (2) a “relational”
coding scheme reflected in the consistency of the same evidence
with current beliefs about the hidden state. Examining their
time courses (Fig. 7b) revealed a marked difference in coding
dynamics: the relational (belief-dependent) coding scheme
showed a faster rise in precision than the absolute (belief-inde-
pendent) coding scheme, from 70 to 300 ms following stimulus
onset (peak t23= 7.0, cluster-level p < 0.001), and peaked about
120 ms earlier (jackknifed mean, relational: 243.4 ms, absolute:
367.6 ms, t23=−5.6, p < 0.001).

A second fundamental difference between the two coding
schemes concerns how their precision varies with the
magnitude of beliefs (Fig. 7c). Indeed, the precision of the
relational scheme scaled positively with the magnitude of beliefs
(linear regression, Cb: β= 0.052 ± 0.008, t23= 6.3, p < 0.001,
Ob: β= 0.063 ± 0.010, t23= 6.7, p < 0.001). It is expected from
a coding scheme, which reflects the consistency of incoming
evidence in relation to the current belief, and is thus not
defined in the absence of beliefs. By contrast, the precision of the
absolute scheme did not increase but rather decreased slightly
with larger beliefs (Cb: β=−0.013 ± 0.005, t23=−2.3, p= 0.031,

Ob: −0.017 ± 0.004, t23=−4.3, p < 0.001), a pattern shared with
the coding of stimulus orientation in early visual cortex
(Supplementary Fig. 11a). Importantly, the precision of the
absolute scheme did not depend on whether incoming evidence
was consistent or conflicting with the current belief, in either
condition (Supplementary Fig. 11b). In other words, the absolute
coding scheme reflects the objective (veridical) amount of
evidence provided by each stimulus, whereas the relational
coding scheme reflects the interaction between the same evidence
and subjective (inferred) beliefs.

Last, we identified cortical sources for which the precision of
the relational coding scheme is significantly larger than the
precision of the absolute coding scheme (Fig. 7d). Averaging
across conditions revealed a bilateral temporal cluster (cluster-
level p < 0.001), whose timing of effect matched the early rise of
the relational coding of evidence at the whole-brain level
(Supplementary Fig. 11c). These results support an active
involvement of associative temporal regions, including the middle
temporal gyrus and the entorhinal cortex, in the coding of
incoming evidence in relation to ongoing beliefs—a coding
scheme stabilized during outcome-based inference.

Discussion
Accurate decision-making in uncertain environments requires
identifying the generative cause of observed stimuli (cue-based
inference, as in perceptual decisions), but also the expected
consequences of one’s own actions (outcome-based inference, as
in reward-guided decisions). These two types of inference
differ in the degree of control the decision-maker has over the
sampling of evidence, a variable that is usually confounded with
other task variables in paradigms used to study perceptual and
reward-guided decisions. By comparing cue-based and outcome-
based inference in tightly matched conditions, we show that
interacting with uncertain evidence—rather than observing
the same evidence—increases the perceived stability of volatile
environments.

A first immediate conclusion is that the status of the decision-
maker—an agent interacting with its environment in the Ob
condition or an observer contemplating the same environment in
the Cb condition—shapes human learning and decision-making
under uncertainty. In the learning sciences, the distinction
between “active” and “passive” information gathering has been
stressed for decades11. Controlling the flow of incoming infor-
mation during learning is seen as an important degree of freedom
for acquiring non-redundant information and accelerating the
learning process. By contrast, and surprisingly, existing theories
of cognitive inference either do not consider the degree of control
over the sampling of evidence as a contextual variable2,4,7,15 or
formulate distinct computational models of “active” and “passive”
inference18. Our reversal learning task allows us to study the
effect of control on inference by comparing two conditions that
differ only in the instrumental control over the sampling of evi-
dence. This selective difference changes the nature of uncertainty,
but not the complexity of inference across conditions: uncertainty
concerns the generative cause of stimuli in the Cb condition,
whereas it concerns the consequence of the previous action in the
Ob condition. We constructed the task such that the amount of
uncertainty is perfectly matched across conditions: Bayes-optimal
inference15 results in the exact same belief trajectories and thus
the exact same decision behavior. In other words, observed dif-
ferences between conditions cannot be attributed to any differ-
ence in the evidence provided to participants. Despite this match,
we found that interacting with uncertain evidence results in the
following: (1) slower reversal learning, which decreases perfor-
mance in volatile environments where reversals are frequent and
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Fig. 7 Neural correlates of absolute and relational coding of evidence. a Neural predictions for stimulus consistency (left) and evidence (right), binned as
a function of stimulus tilt from the nearest category boundary. Stimulus tilt is signed in relation to the current belief: a positive tilt indicates a stimulus
consistent with the current belief, whereas a negative tilt indicates a stimulus conflicting with the current belief. Neural predictions of consistency (left)
have opposite signs for belief-consistent and belief-conflicting evidence, whereas neural predictions of evidence strength (right) are independent of the
current belief. Dots and error bars indicate means ± SEM (n= 24 participants). b Neural coding latencies for stimulus consistency and stimulus evidence.
Top: neural coding time courses (lower panel) and their difference (upper panel). Stimulus consistency (thick lines) shows a faster rise in coding precision
than stimulus evidence (thin lines). Lines and shaded error bars indicate means ± SEM. The shaded area indicates a significant cluster corrected for multiple
comparisons at p < 0.001 based on paired two-sided t-tests. Bottom: estimated neural coding latencies. The neural coding of consistency peaks 120ms
earlier than the neural coding of evidence. Bars and error bars indicate jackknifed means ± SEM (n= 24 participants). c Effect of current belief magnitude
on the neural coding of consistency (left) and evidence (right), grouped in equally sized bins. The coding precision of consistency (left), but not evidence
(right), scales positively with belief magnitude. Dots and error bars indicate means ± SEM. Lines and shaded error bars show parametric fits. Inset: linear
regression slope estimates (jackknifed means ± SEM) of coding precision against belief magnitude (t-test against zero, d.f.= 23, uncorrected for multiple
comparisons). d Searchlight-based differences in coding precision between consistency and evidence across the cortical surface (cluster definition p=
0.001, cluster statistic p < 0.001). Thin dotted lines follow the superior temporal sulcus (left and right) and the collateral sulcus (middle). Source data are
provided as a Source Data file.
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(2) higher asymptotic reversal rates, which increases performance
in stable environments where reversals are rare.

Interacting with uncertain environments confers several cog-
nitive advantages, which could explain the lower perceived hazard
rate and the resulting stabilization of hidden-state inference
in the Ob condition. First, the active sampling of evidence
enables testing current hypotheses in a self-directed, online
manner—an ability known to improve human learning in novel
environments11,12. A functional interpretation is that the lower
perceived hazard rate in the Ob condition aims at testing the
current hypothesis that the previous action samples from the
target category. Such hypothesis testing is by definition impos-
sible in the Cb condition, because participants had no control
over the sampling of evidence. It is noteworthy that the inference
process used in the Cb condition is not equivalent to “observa-
tional” learning—i.e., learning from or about another agent
interacting with uncertain evidence19,20. Indeed, participants
were actively committing to interpretations regarding the source
of evidence in both conditions, the sole difference being the
presence or absence of instrumental control over the sampling of
evidence. Even without considering a hypothesis testing, knowl-
edge about action-outcome contingencies affords an agent to
predict incoming sensory signals and to stabilize these signals by
stabilizing its behavior18,21,22. The lower perceived hazard rate in
the Ob condition may thus aim at stabilizing the source of
the incoming evidence—something which is not possible in the
absence of control. Last, the difference in perceived hazard rate
between the two conditions may betray a temporal hierarchy
between two types of changes, which can arise in uncertain
environments: (1) external (uncontrollable) changes in the state
of the environment (as in the Cb condition) and (2) changes in
the instrumental control of the same environment (as in the Ob
condition). In this view, participants behave as if they assume
changes in control to be less frequent than external changes
occurring in equally uncertain environments23–25.

Although we were primarily interested in differences between
conditions, we also found striking similarities in the computa-
tions and neural correlates of cue-based and outcome-based
inference. At the behavioral level, participants showed correlated
inference parameters between conditions. In particular, inference
was subject to the same limited precision16,17,26 in the two con-
ditions. These correlations indicate that the two types of inference
rely to a large extent on shared cognitive processes. At the neural
level, multiple stimulus properties could be decoded from MEG
responses with the same precision in the two conditions, from
stimulus orientation in early visual cortex to stimulus evidence in
the PPC and LPFC8,27. By applying weights estimated in one
condition to decode stimulus properties in the other condition,
we further demonstrate that the underlying neural “codes” are
shared across the two conditions.

The computational modeling of inference15 accounted for
behavioral differences by an increased reliance on prior beliefs in
the Ob condition, as if participants perceived a lower rate of
reversals than in the Cb condition. Several alternative accounts
can be ruled out based on different aspects of the behavioral and
neural data. First, participants did not rely more on prior beliefs
in the Ob condition, because they perceived the incoming evi-
dence as less reliable: they showed equal sensitivity to the pre-
sented evidence and were instructed explicitly that the same
probability distributions (categories) were sampled in the two
conditions. Furthermore, participants showed no sign of leaky
inference within each sequence, in either condition. The slower
reversal learning in the Ob condition is also unlikely to arise from
a biased, choice-supportive filtering of evidence described and
reported across cognitive domains28–32. Indeed, such “con-
firmation bias” (which filters out belief-inconsistent evidence)

predicts a decreased sensitivity to evidence in the Ob condition—
something which we did not observe. Another observation that
stands at odds with a confirmation bias is that the strength of
belief-inconsistent evidence could be decoded from MEG signals
with equal precision across conditions. Finally, the reliance on
prior beliefs cannot be explained by a heuristic choice strategy,
which samples actions either from the prior belief or from the
incoming evidence without ever combining them33,34. Contrary
to these accounts, we could decode from MEG signals the explicit
interaction between these two terms: the consistency of incoming
evidence with inferred beliefs.

This consistency signal reflects a “relational” coding of evi-
dence in relation to the current belief about the hidden state being
monitored. It is best decoded from MEG signals localized in the
temporal lobe, where both spatial and non-spatial cognitive maps
have been identified in recent years35–38. Examining the fine
temporal dynamics of this neural code revealed that participants
update their beliefs following each stimulus and thus not only
when probed for a response. In other words, this coding scheme
maps the current stimulus not in relation to the previous decision
but in relation to the current belief. We show that this belief-
dependent coding of evidence predicts changes of mind in the
form of coding switches during the preceding sequence: the first
stimuli are coded in relation to the belief at the beginning of
the trial (before the change of mind), whereas the later stimuli are
coded in relation to the belief at the end of the trial (after
the change of mind). Importantly, the precision of this neural
code scales with the magnitude and direction (sign) of beliefs,
thus offering a neural window into their trajectories. The
dynamics of this neural code confirmed the lower perceived
hazard rate in the Ob condition. In particular, coding switches
occurred later in the Ob condition during sequences leading to
changes of the mind, as predicted by larger prior beliefs that
require more conflicting evidence to switch.

In terms of computations, this relational code corresponds to a
contextual, history-dependent variable, not to a momentary evi-
dence variable independent of ongoing beliefs7,39–41. Indeed, its
reference point (i.e., the current belief) can switch sign within a
single sequence of stimuli. In the Ob condition, this means that
a non-target stimulus is coded negatively at the beginning of a
sequence, but another can be coded positively later in the same
sequence if a change of mind has occurred between the two sti-
muli—unlike classical descriptions of reward prediction errors in
the midbrain42,43. Such dynamic coding scheme is however
consistent with recent accounts of opposite coding of factual and
counterfactual outcomes in the frontal cortex44, and of hidden-
state inference by dopaminergic signals45. Another property of
this relational code, shared with other prediction error signals, is
that it scales with the magnitude of the current belief: it is almost
not expressed when the current belief is weak, but strongly
expressed when the current belief is strong. This consistency
signal can thus be described as a dynamic prediction error, tied to
the current belief and not to the previous decision, which can be
used by canonical “temporal difference” learning algorithms5,6 in
both conditions to update the current belief following each new
piece of evidence.

The increased stability of uncertain beliefs in the presence of
control bears important consequences for understanding psy-
chiatric dysfunctions of learning and decision-making under
uncertainty. In particular, the description of obsessive-compulsive
disorder (OCD) as a “doubting disease” fails to distinguish
between uncertainty about the cause of external events and
uncertainty about the consequence of one’s own actions. OCD
patients may show a selective impairment of outcome-based
inference (when inference concerns the uncertain outcomes
of their actions), but no alteration of cue-based inference
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(when inference concerns the uncertain source of observed
stimuli). Even in the general population, the perceived degree of
control over uncertain environments may explain variations in
the attitude of individual decision-makers to risk over short
timescales (by underestimating the true volatility of uncertain
environments in the presence of control), but also variations in
the accuracy of collective decisions (by increasing the perceived
conflict between beliefs across individuals when they concern the
expected outcomes of their actions).

Methods
Participants. Twenty-four adult participants took part in the main magne-
toencephalography study contrasting cue-based and outcome-based inference
(12 females, mean age: 24 years, age range: 20–30 years, all right-handed). Thirty
additional adult participants took part in the control behavioral study contrasting
retrospective and prospective Cb inference (5 excluded due to chance-level per-
formance in more than 1 block of trials, 15 females in the retained sample, mean
age: 26 years). Participants had no history of neurological and psychiatric disease,
and had normal or corrected-to-normal vision. All tested participants gave a
written informed consent before taking part in the study, which received ethical
approval from relevant authorities (Comité de Protection des Personnes Ile-de-
France VI, ID RCB: 2007-A01125-48, 2017-A01778-45). Participants received a
monetary compensation of 80 euros for their participation in the main magne-
toencephalography study or 15 euros plus an additional bonus between 5 and
10 euros depending on their performance for their participation in the control
behavioral study.

Experimental task. We asked participants to play a reversal learning task based on
visual stimuli, which we framed in two conditions corresponding to different
blocks of trials, either as cue-based or outcome-based inference. In both conditions,
participants were asked to track a hidden state s of the task, which alternates
occasionally and unpredictably between two discrete values. Stimuli corresponded
to oriented black bars presented in the foreground of a colored disc displaying an
angular gradient between orange and blue (through gray)—the two cardinal colors
being spaced by π/2. On each trial, a sequence of 2, 4, 6, or 8 stimuli was drawn
from a von Mises probability distribution (category c) centered either on the
orientation indicated by orange (A) or the orientation indicated by blue (B) with a
fixed concentration κ of 0.5 (Fig. 1a). The number of stimuli in each sequence was
sampled pseudo-randomly and uniformly across trials. Each sequence was pre-
sented at an average rate of 2 Hz, using an inter-stimulus interval of 500 ± 50 ms.
The last stimulus of each sequence was followed by a longer delay of 1000 ± 50 ms,
before a change in the fixation point probed the participant for a response, by
pressing either of two keys with their left or right index finger. All stimuli were
presented on a gray background, at a viewing distance of 80 cm. Visual fixation was
monitored online throughout the main task using an EyeLink 1000 eye-tracking
system (SR Research, Ottawa, Canada), using a monocular tracking of the domi-
nant eye at a sampling frequency of 1000 Hz.

Each trial consisted of a stimulus sequence followed by a response (Fig. 1b). The
task was divided in 8 blocks of 72 trials (~7 min each). At the beginning of each
block, an instruction screen framed the upcoming block either as an “observation”
(Cb) block or as an “action” (Ob) block. The task was presented to participants as a
card game, each stimulus depicting a card whose color is determined by the
orientation of the black bar relative to the colored background. Each series of cards
could be drawn either from the orange deck or from the blue deck, corresponding
to the categories A and B. Participants were instructed explicitly that the decks
were partially shuffled, such that the orange deck contained mostly orange cards
but also blue cards and the blue deck contained mostly blue cards but also orange
cards. We also exposed participants to n= 20 draws from each deck (each
draw being sampled from a von Mises distribution using the fixed concentration
κ of 0.5 used in the main task) before practicing the task.

The description of the “observation” (Cb) and “action” (Ob) conditions was
fully symmetric and the order in which participants were instructed about them
was counterbalanced across participants. We described the “observation” (Cb)
condition as follows: “The computer is drawing cards from one of the two decks.
The goal of the game is to identify the deck from which cards are drawn. The
computer changes deck from time to time, without warning.” Each “observation”
block was preceded by an instruction screen, indicating the association between
keys and decks for the block (left key for the orange deck and right key for the blue
deck, or vice versa) counterbalanced across blocks. We described the “action” (Ob)
condition as follows: “You are drawing cards from one of the two decks by pressing
a key. The goal of the game is to draw cards only from the target deck, by
identifying the key it is associated with. The association between keys and decks
reverses from time to time, without warning.” Each “action” block was preceded by
an instruction screen, indicating the target deck for the block (orange or blue)
counterbalanced across blocks. Each block was initiated by a response (i.e., a
random guess) before the onset of the first stimulus sequence. As can be seen from
the descriptions of the two conditions, participants were instructed explicitly about

the presence of reversals, but not about their exact frequency (hazard rate h).
Reversals defined “episodes” during which the hidden state s (the drawn deck in the
“observation” condition or the target-drawing key in the “action” condition) is
fixed. The length of these hidden-state episodes was sampled pseudo-randomly
from a truncated exponential probability distribution (minimum: 4 trials,
maximum: 24 trials) to achieve an approximately constant hazard rate h over the
course of each block.

The main task (divided in 8 blocks of 72 trials, 4 of each condition) was
preceded by a short practice period (2 blocks of 54 trials, 1 of each condition) in
which the concentration κ of stimulus distributions was increased to 1.5 (instead of
0.5 in the main task) such that participants could understand the structure of the
task (in particular, the presence of reversals in the two conditions) with lower
uncertainty regarding the generative category c of each stimulus sequence.
Performance in the practice blocks was also used to assess participants’
understanding of the two conditions. All tested participants were able to perform
both conditions at near-ceiling performance after 54 trials of practice.

Each condition (n= 4 blocks) consisted of 2 types of blocks as follows: “more
stable” blocks (n= 2) that contained 6 hidden-state episodes (i.e., a hazard rate h of
1/12) and “more volatile” blocks that contained 12 hidden-state episodes (i.e., a
hazard rate h of 1/6). The shorter practice blocks (54 trials instead of 72) contained
6 hidden-state episodes (i.e., a hazard rate h of 1/9, in between the values used in
the more stable and more volatile blocks). The eight blocks of the main task were
organized in pairs of blocks of the “observation” and “action” conditions, one of
each volatility, whose order was counterbalanced both within and between
participants. The counter-balancing of the different aspects of the task across
participants required to test a multiple of n= 8 participants. Given the absence of
prior effect sizes for the difference between “observation” (Cb) and “action” (Ob)
conditions, we chose a sample size (n= 24), which exceeded the average sample
size used in human MEG studies at the time of data collection. All results presented
in the main text collapse across the two types of blocks within each condition,
unless noted otherwise.

Magnetoencephalography. MEG data were recorded using a whole-head Elekta
Neuromag TRIUX system (Elekta Instrument AB, Stockholm, Sweden) composed
of 204 planar gradiometers and 102 magnetometers, at a sampling frequency of
1000 Hz. Prior to the experiment, each participant’s head shape was digitized in the
MEG coordinate frame and four additional head position indicator (HPI) coils—
whose positions were also digitized—were used to monitor and correct for small
head movements across blocks. The movement of HPI coils between blocks
remained small (mean: 2.3 mm) and did not differ when comparing blocks of the
same condition and blocks of different conditions (t23= 1.6, p= 0.128).

As the first preprocessing step, magnetic noise from external sources was
removed using temporal Signal Space Separation, after removing manually detected
non-physiological jumps in MEG signals. Stereotyped ocular and cardiac artifacts
were corrected using a supervised principal component analysis (PCA) procedure.
First, the onset of artifacts (either eye blinks or cardiac R peaks) was detected
automatically on auxiliary electrodes (electrooculogram and electrocardiogram)
synchronized with MEG signals using a threshold-based approach. MEG signals
were then epoched from 200 ms before to 800 ms after artifact onsets and a PCA
was used to extract the spatial components of cardiac and ocular artifacts.
Typically, one stereotyped PCA component was removed from continuous MEG
signals for eye blinks, and two components for heart beats. Continuous MEG
signals were high-pass filtered at 0.5 Hz, down-sampled to 500 Hz, and epoched
from 200 ms before to 800 ms after the onset of each stimulus (n= 1440 per
participant and per condition). Finally, epoched MEG signals were low-pass filtered
at 8 Hz and their analytical representations (decompositions into real and
imaginary parts) were computed using the Hilbert transform, resulting in twice the
number of MEG signals (408 from planar gradiometers and 204 from
magnetometers). This preprocessing pipeline was implemented using the
FieldTrip46 toolbox (http://www.fieldtriptoolbox.org) and additional custom scripts
written in MATLAB.

Bayes-optimal inference. Let Lt denote the posterior log-odds belief in the current
hidden state st at trial t, after observing stimulus sequences up to trial t denoted Θ1:t:

Lt � log
p st ¼ 1 Θ1:t

��� �
p st ¼ 2 Θ1:t

��� � !
ð1Þ

Given the hazard rate h, as previously derived15, the prior log-odds belief at trial
t+ 1 corresponds to the following expression:

F Ltð Þ � Lt þ log
1� h
h

þ e�Lt

� �
� log

1� h
h

þ eþLt

� �
ð2Þ

Upon observing the new stimulus sequence Θtþ1 � θ1; ¼ ; θnf g, the belief is
updated using Bayes’ rule by combining the prior log-odds belief F Ltð Þ with the
log-odds evidence Ltþ1 � ‘1; ¼ ; ‘nf g provided by the new stimulus sequence,
corresponding to:

Ltþ1 ¼ F Ltð Þ þ Ltþ1 ð3Þ
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As derived in a previous work17, the log-odds evidence Ltþ1 provided by the
new stimulus sequence is defined as:

Ltþ1 � ∑n
i¼1 log

p θijstþ1 ¼ 1
� �
p θijstþ1 ¼ 2
� � !

ð4Þ

‘tþ1 ¼ ∑n
i¼1 κ cos 2 θi � μ stþ1 ¼ 1

� �� �� �� cos 2 θi � μ stþ1 ¼ 2
� �� �� �� � ð5Þ

‘tþ1 ¼ ∑n
i¼1 2 κ cos 2 θi � μ stþ1 ¼ 1

� �� �� � ð6Þ
where μ stþ1 ¼ 1

� �
indicates the generative mean of the stimulus sequence Θtþ1,

provided that the current state stþ1 ¼ 1. In the Cb condition,
stþ1 ¼ 1
� � � ctþ1 ¼ A

� �
. Therefore:

Ltþ1 ¼ ∑n
i¼1 2 κ cos 2 θi � μA

� �� � ð7Þ
In the Ob condition, stþ1 ¼ 1

� � � L ! ctþ1 ¼ A
� �

;R ! ctþ1 ¼ B
� �� �

.
Therefore:

Ltþ1 ¼
∑n

i¼1 2 κ cos 2 θi � μA
� �� �

if rt ¼ L;

∑n
i¼1 2 κ cos 2 θi � μB

� �� �
if rt ¼ R:

(
ð8Þ

In the Cb condition, optimal decision-making at trial t corresponds to choosing
according to the sign of the posterior log-odds belief Lt . In the Ob condition,
selecting the action that draws sequences from a target category at trial t
corresponds to choosing according to the sign of the prior log-odds belief F Ltð Þ
carried over at trial t+ 1. However, by the above expression of F Ltð Þ, we can
guarantee that F Ltð Þ>0 as long as Lt>0 and h<1=2, such that it is formally
equivalent to cast choices based either on the value of Lt or F Ltð Þ. Thus, we can
use the same Bayes-optimal process in the Cb and Ob conditions.

The fact that the two conditions can be modeled by the same Bayes-optimal
process does not guarantee that the two conditions are perfectly matched in terms
of provided evidence for any given pair of blocks. Indeed, as can be seen in the
above equations, the log-odds evidence Lt depends on the previous response rt�1
in the Ob condition, whereas it does not in the Cb condition. To achieve a perfect
match between conditions, we equalized the evidence L1:T provided by stimulus
sequences, where T is the total number of trials per block (T ¼ 72), using the
following procedure. All orientations θi appear in the above equations as tilts from
a category mean μ. We thus pre-generated each stimulus sequence not as
orientations θi, but as tilts δi , from an arbitrary mean. We then defined
θi � mod δi þ μt ; π

� �
, where μt is the category mean at trial t. In the Ob condition,

if st= 1, μt ¼ μA . Therefore:

Lt ¼ ∑n
i¼1 þ2 κ cos 2δið Þ ð9Þ

In addition, if st ¼ 2, μt ¼ μB . Therefore:

Lt ¼ ∑n
i¼1 �2 κ cos 2δið Þ ð10Þ

In the Ob condition, if st= 1,

μt ¼
μA if rt�1 ¼ L;

μB if rt�1 ¼ R:

	
ð11Þ

Therefore, we obtain the same expression for the log-odds evidence Lt as in the
Cb condition, now irrespective of the previous response rt�1:

Lt ¼ ∑n
i¼1 þ2 κ cos 2δið Þ ð12Þ

Further, if st ¼ 2,

μt ¼
μB if rt�1 ¼ L;

μA if rt�1 ¼ R:

	
ð13Þ

Therefore, we obtain again the same expression as in the Cb condition:

Lt ¼ ∑n
i¼1 �2 κ cos 2 δið Þ ð14Þ

Thus, by using the same pre-generated tilts δi for a Cb block and an Ob block,
we can perfectly equalize the evidence L1:T provided by all stimulus sequences,
resulting in the exact same trajectory of beliefs across conditions. This is because—
and despite the dependence of stimulus orientations Θt on the previous response
rt�1, which is constitutive of the Ob condition—the evidence Lt does not depend
on rt�1 but only on the current hidden state st , whose temporal evolution over the
course of a block can also be fully matched between conditions.

Noisy Bayesian inference. We assume the possible presence of internal variability,
or “noise,” at two distinct points of the decision-making process17. First, inference
noise σinf occurring during the processing of each stimulus sequence—i.e., the
updating of beliefs based on the evidence provided by the stimulus sequence
(referred to as σ in the main text). Second, selection noise σsel during response
selection, equivalent to a “softmax” choice policy.

Inference noise reflects additive internal variability in the sequential updating of
beliefs based on the evidence provided by each stimulus. Updating the current
belief based on n pieces of log-odds evidence introduces n pieces of noise. If each of
these pieces of noise is i.i.d. and normally distributed with zero mean and variance
σ2inf , then the noise introduced by the processing of the sequence has variance
n σ2inf . As described in previous work3, inference noise turns the deterministic belief

update equation into a stochastic draw:

Lt � N F Lt�1ð Þ þ Lt ; n σ
2
inf

� � ð15Þ
Selection noise does not perturb the inference process itself and only corrupts

response selection. We model such internal variability by sampling responses from
the sign of a normally distributed decision variable with mean Lt and variance σ2sel .
In some analyses, we also considered the presence of response lapses—i.e., trials in
which the participant blindly repeats the previous response instead of selecting the
response based on the posterior belief. This leads to a fraction plapse of trials
associated with a probability of repeating the previous response p rt ¼ rt�1ð Þ ¼ 1.

Model-based analysis of behavior. For a block of T trials, each fully specified by
its stimulus sequence Θt , we observed a series of responses r1; ¼ ; rT :We fitted the

parameter values ϕ � h; σ inf ; σsel; plapse
n o

, which resulted in the best match

between the observed series of responses and the series of responses predicted by
the model, p r1:T jΘ1:T ; ϕ

� �
. We also fitted “reduced” models that removed certain

components by fixing their corresponding parameters to zero. For example, a
model without selection noise would correspond to σsel ¼ 0.

We found the best-fitting parameter values by sampling from the Bayesian
posterior over parameters using particle MCMC methods47. These methods use
standard MCMC methods to sample from the parameter posterior, but replace
computation of the parameter likelihood pðr1:T jΘ1:T ; ϕÞ—not possible in closed
form—with a noisy but unbiased approximation of this likelihood by a particle
filter. As the MCMC method, we used the adaptive mixture Metropolis method48

that adapts its proposal distribution in an initial burn-in period to achieve
favorable acceptance ratios. Prior distributions over parameters p ϕð Þ were defined
as truncated normal distributions (h: mean= 0.2, SD= 0.1, range= [0,1]; σ inf :
mean= 0.5, SD= 0.2, range= [0,10]; σsel : mean= 0.5, SD= 0.2, range= [0,10];
plapse: mean= 0.01, SD= 0.05, range= [0,1]). It is noteworthy that the particle
filter also provided an unbiased estimate of the belief trajectory p L1:t jr1:t ;Θ1:t ;ϕð Þ
for t 2 1;T½ �, which was used in subsequent analyses of MEG signals. The particle
MCMC fitting procedure was written in Julia v1.049 (https://julialang.org) and was
run using 10,000 particles.

We used the unbiased estimate of the marginal likelihood pðr1:T Θ1:Tj Þ
computed using conditional likelihoods from the particle filter as model evidence
in BMS analyses. This metric integrates over parameters ϕ and thus penalizes
model complexity50 without requiring explicit penalization terms as in the
Bayesian Information Criterion. BMS was conducted using separate fixed-effects
and random-effects approaches, which yielded qualitatively identical results. The
fixed-effects approach assumes that all participants are relying on the same model
and consists in comparing the log-marginal likelihood summed across participants
for each tested model. By contrast, the random-effects approach assumes that
different participants may rely on different models and consists in estimating the
distribution over models that participants draw from ref. 51. We used the Dirichlet
parameterization of the random-effects approach implemented in SPM12
(Wellcome Center for Human Neuroimaging; http://www.fil.ion.ucl.ac.uk/spm).

Psychometric analysis of behavior. Reversal learning behavior was characterized
by two psychometric curves. First, we fitted response reversal curves—i.e., the
probability of correctly identifying the hidden state of the current episode as a
function of trial position in the current episode—by a saturating exponential
function:

p rk ¼ s
� � ¼ p0 þ prev � p0

� �
1� e�

k
trev


 �
ð16Þ

where p rk ¼ s
� �

corresponds to the probability of correctly identifying the current
hidden state s at trial k, with k the position of the trial in the current episode. The
two fitted parameters are the reversal time constant trev and the asymptotic reversal
rate prev . The initial reversal rate p0 is set to 0.5 for the first episode of each block
and to 1� p rk ¼ s

� �
reached at the last trial of the previous episode for subsequent

episodes. Best-fitting parameter values for trev and prev were obtained by maximum
likelihood estimation (MLE) through gradient descent (on the negative log-like-
lihood) using the interior point algorithm implemented in MATLAB.

Second, we fitted response repetition curves—i.e., the probability of repeating
the previous response as a function of the evidence provided by the intervening
sequence in favor of the previous response—by a three-parameter sigmoid
function:

p rt ¼ rt�1ð Þ ¼ prep þ 1� prep

 � 1

1þ e�βLrep;tþβrep
ð17Þ

where p rt ¼ rt�1ð Þ corresponds to the probability of repeating the previous
response and Lrep;t corresponds to the log-odds evidence provided by the stimulus
sequence at trial t in favor of the previous response rt�1:

Lrep;t � ∑n
i¼1 log

p θijst ¼ rt�1ð Þ
p θijst≠rt�1ð Þ

� �
ð18Þ

The three fitted parameters are the slope of the sigmoid curve β (indexing the
sensitivity of responses to the evidence Lrep;t), the decision criterion for repeating
the previous response βrep and the lower asymptote of the sigmoid curve prep
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(reflecting the fraction of evidence-independent repetitions). As above, the best-
fitting parameter values were obtained by MLE. The decision criterion βrep was
reparametrized as the PSE—i.e., the amount of evidence Lrep;t for which
p rt ¼ rt�1ð Þ= 0.5.

Multivariate pattern analyses of MEG signals. We applied multivariate pattern
analyses to stimulus-locked MEG epochs, to estimate the neural patterns associated
with four characteristics of each stimulus i, where i corresponds to the position
of the stimulus in question in the current sequence: (1) its orientation θi described
by cos 2θi

� �
and sin 2θi

� �
; (2) its change (tilt) from the previous stimulus,

described by θi � θi�1

�� ��; (3) the strength of the evidence provided by the stimulus,
described by its tilt from the nearest category boundary θ0, θi � θ0

�� ��; and (4) the
consistency of the stimulus with the current belief Lt;i , described as its tilt from the
nearest category boundary signed by the direction of the provided evidence ‘i in
relation to Lt;i. Importantly, owing to features of our experimental task (in parti-
cular, the changes in category means μA and μB across trials), these four stimulus
characteristics showed no significant correlation with each other for a given sti-
mulus i nor between successive stimuli i and i+ 1 (all r2 < 0.001).

We used a cross-validated multivariate linear encoding model to estimate the
spatial MEG patterns ŵ associated for each participant with each stimulus
characteristic x at every time point from 100 ms before to 700 ms after stimulus
onset. For each cross-validation fold (n= 12, interleaved), we defined spatial MEG
patterns ŵ on the training set by regressing—in a least-squares sense—each z-
scored gradiometer feature Ztrain (real and imaginary parts, yielding 408 features in
total) against the stimulus characteristic xtrain across stimulus exemplars (n= 1320
for each cross-validation fold), by solving argminw Ztrain � wx2train

� �
for each MEG

feature. We then projected the MEG data on the test set Ztest , on the dimension
defined by the coding weights ŵ to obtain neural predictions the stimulus
characteristic xtest for each epoch of the test set (n= 120 for each cross-validation
fold). After applying this procedure for each cross-validation fold, we computed the
linear correlation coefficient between neural predictions x̂ and ground-truth values
x of the stimulus characteristic. The coding precision metric reported in the main
text corresponds to the Fisher transform of the correlation coefficient, which is
approximately normally distributed, such that we could compute standard
parametric statistics at the group level.

The multivariate pattern analyses described above were conducted for each
participant and each condition. At the group level, we used standard parametric
tests (paired t-tests, repeated-measures analyses of variance (ANOVAs)) to assess
the statistical significance of observed differences in coding precision between
conditions across tested participants. Neural coding latency was computed for each
stimulus characteristic and each condition by estimating the peak of coding
precision using a jackknifing (leave-one-out) procedure52. The type 1 error rate
arising from multiple comparisons was controlled for using non-parametric
cluster-level statistics computed across time points53. All findings reported in the
main text were robust to changes in the method used for computing spatial MEG
patterns (e.g., by applying ridge-regression decoding instead of least-squares
encoding) and to the number of cross-validation folds.

We accounted for the unbalance in trial number between sequences leading to
response repetitions and response reversals when decoding consistency at each
stimulus position (Fig. 6d). As the smaller number of sequences leading to response
reversals could artificially reduce the coding precision of consistency, we applied
the same spatial MEG patterns for the two types of sequences (“common-filters”
approach). These spatial patterns (coding weights) were estimated through cross-
validation based on sequences leading to response repetitions, separately for the Cb
and Ob conditions. For similar reasons, when assessing the effect of the current
belief magnitude on the neural coding of stimulus characteristics (Fig. 7c), we
applied the same spatial MEG patterns for each bin. These spatial patterns were
estimated through cross-validation across all bins, separately for the Cb and Ob
conditions.

Source reconstruction of MEG signals. Cortical surface-based segmentation and
reconstruction was performed with the FreeSurfer image analysis suite (http://
surfer.nmr.mgh.harvard.edu) using the default surface-based pipeline54,55, based
on high-resolution T1-weighted anatomical magnetic resonance images recorded
from each participant using a Verio 3T scanner (Siemens AG, Munich, Germany)
and a 64-channel head coil, driven by a three-dimensional magnetization-prepared
rapid acquisition with gradient echo sequence, with an isotropic resolution of 1
mm3. Obtained anatomical surfaces were down-sampled to 5000 vertices and
realigned to the MEG spatial coordinate frame using each participant’s digitized
head shape and fiducial markers. Source reconstruction was performed with
Brainstorm56 (http://neuroimage.usc.edu/brainstorm) using weighted minimum
norm estimation with Tikhonov regularization57. Forward modeling was per-
formed using overlapping spheres. We obtained noise covariance matrices from
3min of “empty room” recordings58 on which we applied the exact same pre-
processing pipeline, using a diagonal regularization λ of 0.1. Vertex-wise inverse
operators were computed based on MEG signals from both gradiometers and
magnetometers (non-Hilbert transformed) by constraining dipole orientations to
be orthogonal to the cortical surface.

Source reconstruction was conducted for each participant based on his/her
individual cortical surface. The results of analyses performed in source space were
then co-registered to a common anatomy (the ICM152 MNI template) for group-
level statistics based on the FreeSurfer registration procedure. In practice, vertex-
level results obtained for each participant were interpolated from the subject-
specific anatomy to the common anatomy using inverse distance weighting as
implemented in Brainstorm (Shepard’s method).

Searchlight analysis of MEG signals. We conducted ‘“searchlight”-based multi-
variate pattern analyses on the activity of reconstructed cortical sources (vertices)
from each participant. After decomposing the activity of each vertex into its real
and imaginary parts using the Hilbert transform (as done for sensor-level analyses),
we computed coding precision at each vertex position and each time point around
stimulus onset by using as features the current vertex and its ten closest neighbors
in terms of Euclidean distance. To increase the spatial selectivity of searchlight-
based analyses, we computed for each stimulus characteristic and each vertex
position a selectivity metric, corresponding to the result of a jackknifed F-test,
which compares coding precision of this characteristic to the coding precision of
other characteristics. We accounted for overall differences in coding precision
between characteristics by normalizing the coding precision of each characteristic
at each vertex position by the peak coding precision of this characteristic across all
time points and vertices. Non-parametric cluster-level statistics53 were computed
across time points and vertices as implemented in FieldTrip46. We marginalized
these cluster-level statistics across either space or time by summing statistics across
the corresponding dimension for display purposes.

Cross-condition generalization analysis of MEG signals. We conducted cross-
condition generalization analyses of spatial MEG patterns to assess the degree of
similarity between neural representations of stimulus characteristics across con-
ditions. In practice, we used the coding weights estimated on the training set of one
condition to compute neural predictions on the test set of the other condition.
Although these cross-condition generalization analyses do not require cross-
validation to avoid overfitting, as the two conditions are non-overlapping, we
wanted to compare coding precision scores between within-condition (non-gen-
eralized) and between-condition (generalized) settings. We thus applied the same
12-fold cross-validation approach within each condition (which had the same
number of stimulus exemplars) such that: (1) coding weights ŵ were estimated
using the same amount of training data in within- and between-condition settings,
and (2) coding precision was computed using the same amount of test data in the
two settings.

To quantify the degree of similarity between two neural codes based on the
results of cross-condition generalization analyses, we simulated and fitted a fixed
number n of linear coding units zi (n= 300) to within- and between-condition
coding precision scores obtained from the MEG data. A fixed number nsel of these
units (nsel = 100) was defined as “selective” to a stimulus characteristic x, meaning
that their activity scales linearly with x (Fig. 5a):

zi ¼ βi x þ ε ð19Þ
where βi = 1 for selective units and 0 for non-selective units, and ε � N 0; σð Þ
corresponds to background noise of variance σ2 (i.i.d. across units). We used the
same cross-validated multivariate linear encoding model and the same amount of
data, to estimate coding patterns ŵ for the stimulus characteristic x from
population activity and obtain predictions x̂ � ŵTZ. Simulating the same
population of units in two conditions was controlled by three parameters: the
amount σ of background noise in each condition (σCb and σOb) and the fraction of
units ω selective to the stimulus characteristic x in both conditions (coding
similarity). Parameters σCb and σOb scaled negatively with coding precision within
each condition (values 1–2 in Fig. 5), whereas parameter ω scaled positively with
coding precision between conditions (values 3–4 in Fig. 5). We fitted all three
parameters to the four coding precision values obtained from the cross-condition
generalization analysis, using a jackknifed least-squared error minimization
procedure. Importantly, the best-fitting estimate of coding similarity ω was robust
to changes in the total number n of units and to the number nsel of selective units
(both fixed across conditions).

Estimation of neural hazard rate from MEG signals. We used the estimate of the
belief trajectory p L1:t jr1:t ;Θ1:t ; ϕ

� �
for t 2 1;T½ � provided by the particle filter—

conditioned on each participant’s responses r1:t , stimulus sequences Θ1:t , and
model parameters ϕ to fit the “neural” hazard rate h* for which we could best
decode consistency from MEG signals. For this purpose, we computed belief tra-
jectories for varying values of the perceived hazard rate h (Fig. 6a)—i.e., ignoring
the best-fitting value obtained from behavior—and derived for each of these tra-
jectories the consistency of each stimulus in relation to the estimated belief con-
ditioned on each value of h. These alternative instantiations of the same
consistency variable xcons were used to compute “tuning curves” of coding preci-
sion as a function of h. We then fitted the hazard rate value h* �
argmaxhðcorrðbxcons;xconsÞÞ for each participant and condition, where xcons depends
implicitly on h and x̂cons corresponds to neural predictions obtained using the
multivariate pattern analysis described above. To obtain smooth estimates of h*,
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we approximated each tuning curve by a quadratic polynomial function using a
least-squared error minimization procedure and computed its maximum. Impor-
tantly, using unsmoothed estimates of h* did not change the pattern of findings.

Statistical testing. Unless noted otherwise, statistical analyses of differences
between scalar metrics across experimental conditions relied on two-tailed para-
metric tests (paired t-tests, repeated-measures ANOVA) across tested participants
in a paired (within-subject) manner. Given our sample sizes, these statistical tests
were applied outside the small-sample regime, thereby matching their basic
assumptions.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The manuscript includes all datasets generated or analyzed during this study. The
behavioral data from the main magnetoencephalography experiment and the control
behavioral experiment are publicly available at https://doi.org/10.6084/m9.
figshare.13200128. The magnetoencephalography data are available from the
corresponding authors upon request. Source data are provided with this paper.

Code availability
The analysis code supporting the reported findings are available from the corresponding
authors upon request.
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Supplementary Fig. 1 – Matched suboptimal Bayesian inference across conditions. a, Matched trajectories of Bayes-optimal 
predictions (beliefs at the onset of each trial, expressed as log-odds ratio) for two matching blocks in the cue-based and outcome-
based conditions. The trajectories of beliefs shown (mean +/- s.d., obtained using 𝜎inf = 0.5 and ℎ = 0.125) were matched by using 
the same pre-generated stimulus tilts for the two blocks. b, Bayesian model selection regarding the sources of behavioral varia-
bility in the cue-based and outcome-based conditions (n = 24 participants). Left: the left bar shows the estimated frequency and 
s.d. of inference noise (𝜎inf > 0), whereas the right bar shows the estimated frequency and s.d. of selection noise (𝜎sel > 0). 
Exceedance probabilities 𝑝exc are reported above each bar. Participants feature significant inference noise but no selection noise. 
Right: model recovery results regarding the sources of behavioral variability in the cue-based and outcome-based conditions. 
Confusion matrices show the estimated frequency (from white = 0 to black = 1) of each noise source (columns) for simulations of 
each noise source (rows). c, Validation of inference noise as main source of behavioral variability. Simulations of inference noise 
predict that the sensitivity of participants’ decisions to evidence should decrease as a function of the number of inference steps 
in a given trial (black dots). Bars and error bars indicate jackknifed group-level means ± s.e.m. (n = 24 participants). d, Falsification 
of selection noise as main source of behavioral variability. Simulations of selection noise predict that the sensitivity of participants’ 
decisions to evidence should be independent of the number of inference steps (black dots). Participant estimates (bars) deviate 
from model simulations in both conditions. Bars and error bars indicate jackknifed group-level means ± s.e.m. (n = 24 participants). 
e, Psychophysical kernel estimation. Left: unbiased weighting of evidence. Estimated weight of evidence (y-axis) as a function of 
objective stimulus evidence (x-axis) binned into eight equally-spaced bins. Dots and error bars indicate group-level means ± s.e.m. 
(n = 24 participants). Right: leak-free accumulation of evidence. Estimated sensitivity to stimulus evidence (y-axis) as a function 
of stimulus position from start (left) and end (right) of a sequence (x-axis). f, Bayesian model selection regarding the presence of 
an integration leak across stimuli of the same sequence (n = 24 participants).  
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Supplementary Fig. 2 – Robustness of psychometric effects to trial-to-trial variability in task parameters. a, Response 
repetition curves in the cue-based (left) and outcome-based (right) conditions, split between trials where the hidden state 𝑠 either 
repeats itself (lighter colors) or reverses (darker colors). Lines and shaded error bars indicate jackknifed group-level means ± 
s.e.m. Although trials where the hidden state reverses are associated with more conflicting evidence than trials where the hidden 
state repeats itself (top insets), these two classes of trials are associated with identical PSE estimates (right insets). Bars and 
error bars indicate jackknifed group-level means ± s.e.m. (n = 24 participants). b, Best-fitting jackknifed estimates of PSE as a 
function of the number of stimuli in the current sequence. Bars and error bars indicate jackknifed group-level means ± s.e.m. (n = 
24 participants). The increased PSE in the outcome-based condition is robust to trial-to-trial variability in sequence length. c, 
Matched response time kernels surrounding response switches. Dots and error bars indicate group-level means ± participant-
level s.e.m. (n = 24 participants). Response switches (and trials preceding/following switches) are associated with increased 
response times in both conditions. Response switches are associated with identical response times in the two conditions, in 
disagreement with a response-level account of the difference between conditions. Two stars indicate a significant effect at p < 
0.01, three stars at p < 0.001, n.s. a non-significant effect (paired two-sided t-tests, d.f. = 23, no correction for multiple compari-
sons).  
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Supplementary Fig. 3 – Descriptive modeling of hidden-state inference. a, Descriptive update of the posterior belief 𝐿)*+, 
controlled by two free parameters: a multiplicative scaling factor 𝛼 (top), and an additive constant factor 𝛿 (bottom). This descriptive 
update decomposes the normative update (left) into a scaling (gain) term, and a constant (bias) term. b, Best-fitting parameter 
values for the scaling factor (left) and the constant factor (right). Black dots and error bars indicate group-level means ± s.e.m., 
whereas colored dots indicate participant-level estimates. The scaling factor increases by 97% in the outcome-based condition, 
whereas the constant factor increases only by 20%. c, Response repetition curves in the cue-based (left) and outcome-based 
(right) conditions, split between trials where the evidence provided by the previous sequence in favor of the previous response is 
either weak (smaller than its median value, lighter colors) or strong (larger than its median value, darker colors). Lines and shaded 
error bars indicate jackknifed group-level means ± s.e.m. Strong evidence in the previous trial in favor of the previous response 
shifts psychometric curves leftwards. d, Best-fitting jackknifed estimates of PSE as a function of evidence in the previous trial. 
Bars and error bars indicate jackknifed group-level means ± s.e.m. (n = 24 participants). Strong evidence in the previous trials 
increases the PSE significantly more in the outcome-based condition. e, Predicted jackknifed estimates of PSE for simulations of 
the best-fitting model either with a scaling term (left) or without a scaling term (right). Model simulations with a scaling term can 
account for the observed interaction between condition and evidence in the previous trial, whereas model simulations without a 
scaling term fail to account for this effect. Bars and error bars indicate jackknifed group-level means ± s.e.m. (n = 24 participants). 
One star indicates a significant effect at p < 0.05, two stars at p < 0.01, three stars at p < 0.001 (paired two-sided t-tests, d.f. = 
23, no correction for multiple comparisons).   
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Supplementary Fig. 4 – Robustness of psychometric effects to inter-individual variability. a, Relative insensitivity of tested 
participants to subtle changes in true hazard rate across blocks. Perceived hazard rate estimates in the cue-based (left) and 
outcome-based (middle) conditions as a function of the true/generative hazard rate (low: more stable blocks, high: more volatile 
blocks), marked as black lines. Black dots and error bars indicate group-level means ± s.e.m., whereas colored dots indicate 
participant-level estimates. The perceived hazard rate does not adapt to changes in true hazard, despite the fact that the optimal 
(accuracy-maximizing) hazard rate (right) tracks changes in true hazard rate. b, Left: correlation between perceived hazard rate 
estimates in more stable (x-axis) and more volatile (y-axis) blocks (n = 24 participants per condition). Right: correlation between 
inference noise estimates in more stable and more volatile blocks. Dots and error bars indicate posterior means ± s.d. obtained 
by model fitting. The thin dotted line shows the identity line. Both parameters correlate strongly between blocks across tested 
participants. c, Psychometric effects for participants with more volatile inference (N = 12 participants). Left: perceived hazard rate 
estimates. Middle: response repetition curves, showing a clear leftward shift in the outcome-based condition. Lines indicates 
group-level means ± s.e.m. Right: best-fitting psychometric parameters. The PSE (left) is increased in the outcome-based condi-
tion, whereas the sensitivity to evidence (right) is equal across conditions. d, Psychometric effects for participants with more stable 
inference (N = 12 participants). Left: perceived hazard rate estimates. Middle: response repetition curves, showing also a clear 
leftward shift in the outcome-based condition. Right: best-fitting psychometric parameters. Like the other group, the PSE (left) is 
increased in the outcome-based condition, whereas the sensitivity to evidence (right) is equal across conditions. Two stars indicate 
a significant effect at p < 0.01, three stars at p < 0.001, n.s. a non-significant effect (paired two-sided t-tests, d.f. = 23, no correction 
for multiple comparisons).   
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Supplementary Fig. 5 – Reversal learning behavior during retrospective and prospective cue-based inference. Results 
obtained from an additional behavioral dataset (N = 25) in the cue-based condition where participants are instructed to report 
either the category of the current sequence (retrospective condition) or the next sequence (prospective condition). a, Response 
reversal curves. The thin dotted line indicates the position of the reversal. Dots indicate the observed data (means ± s.e.m., n = 
24 participants), whereas lines and shaded error bars indicate best-fitting saturating exponential functions (means ± s.e.m., n = 
24 participants). b, Best-fitting parameters of saturating exponential functions in the retrospective and prospective conditions. Left: 
the reversal time constant is not slower and the asymptotic reversal rate is not higher in the prospective condition. Black dots and 
error bars indicate group-level means ± s.e.m., whereas colored dots indicate participant-level estimates (n = 24 participants). 
Right: correlation between psychometric parameters. As in the main experiment, the reversal time constant and asymptotic re-
versal rate correlate positively across tested participants. c, Response repetition curves. The thin dotted line indicates perfectly 
uncertain (null) evidence. Dots indicate the observed data (means ± s.e.m., n = 24 participants), whereas lines and shaded error 
bars indicate best-fitting sigmoid functions (means ± s.e.m., n = 24 participants).d, Best-fitting parameters of sigmoid functions in 
the retrospective and prospective conditions. Left: the PSE does not increase in the prospective condition. Right: correlation 
between psychometric parameters. As in the main experiment, the PSE and sensitivity to evidence correlate weakly across tested 
participants. n.s. indicates a non-significant effect (paired two-sided t-tests, d.f. = 23, no correction for multiple comparisons). The 
error band indicates the 95% confidence interval for the regression line fitted using ordinary least squares. 
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Supplementary Fig. 6 – Cross-temporal generalization matrices of stimulus characteristics. a, Cross-temporal generaliza-
tion of stimulus orientation from whole-brain MEG sensors. Left: training-test matrices obtained in the cue-based (left) and out-
come-based (right) conditions. Right: cross-test section trained at the time point associated with maximum coding precision (120 
ms). Stimulus orientation is associated with a highly dynamic (sharp diagonal) representation in MEG signals. Lines and shaded 
error bars indicate group-level means ± s.e.m. b, Cross-temporal generalization of stimulus change from whole-brain MEG sen-
sors. Left: training-test matrices in the cue-based and outcome-based conditions. Right: cross-test section trained at the time point 
associated with maximum coding precision (220 ms). Stimulus change is also associated with a highly dynamic (sharp diagonal) 
representation in MEG signals. c, Cross-temporal generalization of stimulus evidence from whole-brain MEG sensors. Left: train-
ing-test matrices in the cue-based and outcome-based conditions. Right: cross-test section trained at the time point associated 
with maximum coding precision (360 ms). Stimulus evidence is associated with a slightly less dynamic, more stable (wider diag-
onal) representation in MEG signals.  
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Supplementary Fig. 7 – Cross-characteristic covariations of neural codes. a, Cross-characteristic covariations of the neural 
coding of stimulus orientation from whole-brain MEG sensors. Left: cross-validated correlation between the MEG data projected 
on the dimension coding for stimulus orientation 𝑥/ori and the true stimulus orientation. Coding precision peaks at 120 ms following 
stimulus onset. Middle: correlation between 𝑥/ori and stimulus change. Right: correlation between 𝑥/ori and stimulus evidence. The 
neural code of stimulus orientation evolves through ‘null’ dimensions for the other two characteristics. b, Cross-characteristic 
covariations of the neural coding of stimulus change from whole-brain MEG sensors. Left: correlation between the MEG data 
projected on the dimension coding for stimulus change 𝑥/ch and stimulus orientation. Middle: correlation between 𝑥/ch and the true 
stimulus change. Coding precision peaks at 220 ms following stimulus onset. Right: correlation between 𝑥/ch and stimulus evi-
dence. The neural code of stimulus change evolves through mostly null dimensions for the other two characteristics. c, Cross-
characteristic covariations of the neural coding of stimulus evidence from whole-brain MEG signals. Left: correlation between the 
MEG data projected on the dimension coding for stimulus evidence 𝑥/evi and stimulus orientation. Middle: correlation between 𝑥/evi 
and stimulus change. Right: correlation between 𝑥/evi and the true stimulus evidence. Coding precision peaks at 360 ms following 
stimulus onset. The neural code of stimulus evidence evolves through mostly null dimensions for the other two characteristics, 
except around 200 ms following stimulus onset where it covaries negatively with stimulus change. Lines and shaded error bars 
indicate group-level means ± s.e.m. Shaded gray areas indicate significant effects (paired two-sided t-tests, d.f. = 23, cluster-
corrected p < 0.001 across time samples).   
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Supplementary Fig. 8 – Searchlight-based coding of stimulus characteristics across the cortical surface. a, Searchlight-
based coding precision of stimulus characteristics (left column: orientation, middle column: change, right column: evidence) at the 
latency of their peak, thresholded at 60% of their coding peak (top row) or at an arbitrary, uncorrected p-value (bottom row). The 
neural coding of stimulus orientation peaks in occipital cortex surrounding V1. The neural coding of stimulus change peaks in 
parietal cortex surrounding the IPS, and in the TPJ. The neural coding of stimulus evidence overlaps broadly with the neural 
coding of stimulus change, but additionally includes the insula and the LPFC. b, Neural coding precision of stimulus characteristics 
(left: orientation, middle: change, right: evidence) at the latency of their peak across five regions-of-interest. All three stimulus 
characteristics are coded significantly above chance in all five regions-of-interest. Black dots and error bars indicate group-level 
means ± s.e.m., whereas colored dots indicate participant-level estimates. Dashed lines indicate the global coding peak of each 
stimulus characteristic across all cortical sources. Abbreviations: V1 for primary visual cortex, TPJ for temporoparietal junction, 
IPS for intraparietal sulcus, and LPFC for lateral prefrontal cortex. Three stars indicate a significant effect at p < 0.001 (paired 
two-sided t-tests, d.f. = 23, uncorrected for multiple comparisons).  
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Supplementary Fig. 9 – Searchlight-based selectivity to stimulus characteristics across the cortical surface. a, Normal-
ized time courses of neural coding of stimulus orientation (red), stimulus change (green) and stimulus evidence (blue) in five 
regions-of-interest. The neural coding of each stimulus characteristic is normalized by its global coding across time points and 
cortical sources to correct for large differences between stimulus characteristics. Selectivity is defined as higher normalized coding 
of a stimulus characteristic than the other two characteristics. All five regions-of-interest show simultaneous coding of the three 
stimulus characteristics, but to different extents over time. Lines and shaded error bars indicate jackknifed group-level means ± 
s.e.m. b, Temporal clusters of selectivity to stimulus characteristics in the five regions-of-interest, corrected for multiple compari-
sons at the cluster level at p < 0.001 based on paired two-sided t-tests between the coding precision of one characteristic and the 
other two characteristics). V1 shows early selectivity to stimulus orientation at 100 ms following stimulus onset. The TPJ shows 
later selectivity to stimulus change at 200 ms. The IPS shows selectivity to stimulus change at 200 ms, and selectivity to stimulus 
evidence after 350 ms. The LPFC and insula show selectivity to stimulus evidence after 350 ms. c, Rostro-caudal gradient of 
selectivity to stimulus characteristics. Dots indicate peaks of normalized coding of each stimulus characteristic (red: orientation, 
green: change, blue: evidence) for each cortical source (N = 5,000) along the rostro-caudal axis, from occipital cortex (left) to 
frontal cortex (right). Lines and shaded error bars indicate jackknifed means ± s.e.m. of coding peaks for each stimulus charac-
teristic along the rostro-caudal axis, obtained using robust spline smoothing. Coding peaks show a rostro-caudal gradient of 
selectivity to stimulus characteristics, from occipital selectivity to stimulus orientation (red-shaded area on the left) to frontal se-
lectivity to stimulus evidence (blue-shaded area on the right). The vertical dashed line indicates the position of the central sulcus 
on the rostro-caudal axis. Abbreviations: V1 for primary visual cortex, TPJ for temporoparietal junction, IPS for intraparietal sulcus, 
and LPFC for lateral prefrontal cortex.  
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Supplementary Fig. 10 – Neural evidence for stimulus-level hidden-state inference.  a, Estimated coding similarity for 
stimulus consistency across conditions. Cross-condition generalization indicates near-perfect similarity across conditions (jack-
knifed mean: 95%). Bars and error bars indicate jackknifed group-level means ± s.e.m. (n = 24 participants). Black dots show 
best-fitting values from the similarity estimation procedure. b, Alternative update schemes for hidden-state inference indistinguish-
able from behavior alone. Top row: stimulus-level inference. This scheme assumes that participants update their belief in the 
current value of the hidden state after each stimulus, throughout each sequence of stimuli. In this same example, the change-of-
mind now occurs midway through the sequence, as soon as a conflicting stimulus (here, stimulus 2) flips the sign of the log-odds 
belief. Under this stimulus-level update scheme, stimulus consistency is defined as the evidence provided by each stimulus in 
favor of the current belief accounting for previous stimuli in the same sequence. Bottom row: response-level inference. This 
scheme assumes that participants update their belief in the current value of the hidden state when probed for a response, following 
each sequence of stimuli. In this example, a change-of-mind occurs when participants combine their prior belief with the evidence 
provided by the current sequence. Under this response-level update scheme, stimulus consistency is defined as the evidence 
provided by each stimulus in favor of the previous response – which reflects the prior belief at the beginning of the current trial. 
Positive consistency indicates evidence consistent with the previous response (such as stimulus 1), whereas negative consistency 
indicates evidence conflicting with the previous response (such as stimuli 2 and 𝑛). As can be seen, the two alternative definitions 
of stimulus consistency differ for all stimuli presented after a mid-sequence belief switch – such as stimulus 𝑛 in this example. c, 
Left: neural coding of stimulus consistency assuming stimulus-level inference (solid lines) and response-level inference (dashed 
lines). Stimulus consistency is coded more precisely in relation to the current belief (stimulus-level inference) than to the prior 
belief (response-level inference). The shaded area indicates the significant difference in coding precision between the two update 
schemes. Lines and shaded error bars indicate group-level means ± s.e.m. of coding precision, baseline-corrected across condi-
tions using the last 100 ms preceding stimulus onset (dashed area) to account for possible non-zero correlations across succes-
sive stimuli. Right: neural coding of stimulus consistency (solid lines) and the magnitude of the current belief (dashed lines). 
Stimulus consistency is coded in a stronger and more sustained fashion than the magnitude of the current belief. The shaded 
area indicates the significant difference in coding precision between the two quantities, corrected at the cluster level at p < 0.001 
(paired two-sided t-tests, d.f. = 23).  
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Supplementary Fig. 11 – Neural dissociation between absolute and relational coding of evidence. a, Effect of current belief 
magnitude on the neural coding of stimulus orientation (left) and stimulus change (right), grouped in equally sized bins. Like 
stimulus evidence, the coding precision of stimulus orientation (left) scales slightly negatively with belief magnitude. The coding 
precision of stimulus change (right) shows a U-shaped relationship with belief magnitude. Dots and error bars indicate jackknifed 
group-level means ± s.e.m. (n = 24 participants). Lines and shaded error bars show least-squares parametric fits. Insets: linear 
term (stimulus orientation) and quadratic term (stimulus change) estimates (jackknifed group-level means ± s.e.m.) of coding 
precision against current belief magnitude (t-test against zero, d.f. = 23, uncorrected for multiple comparisons). b, Time course of 
coding precision of stimulus evidence for stimuli consistent with the current belief (left) and stimuli conflicting with the current belief 
(right). The neural coding of stimulus evidence does not differ between conditions for consistent nor conflicting stimuli. Lines and 
error bars indicate group-level means ± s.e.m. c, Normalized time courses of neural coding of stimulus consistency (violet) and 
stimulus evidence (blue) in three regions-of-interest. The MTG, entorhinal cortex and insula show selectivity to stimulus con-
sistency around 200 ms following stimulus onset. Lines and shaded error bars indicate jackknifed group-level means ± s.e.m. 
Abbreviation: MTG for middle temporal gyrus. 
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Computational model specifications 

Generative model of the task 

The generative model of the task is as follows. Each trial 𝑡 in a sequence of 𝑇 trials has an associated 

hidden state 𝑠) ∈ {1,2} that the decision-maker aims to infer. Across successive trials, the hidden 

state remains unchanged with probability 1 − ℎ and changes with probability ℎ (hazard rate), that is 

𝑝(𝑠) = 𝑠)*+|𝑧)*+) = 1 − ℎ. In each trial 𝑠) the decision-maker gains information about the current 𝑠) 

by observing the sample sequence 𝑠),+:FG of 𝑛) oriented patterns, drawn independent and identically 

distributed (i.i.d.) by dividing a draw from a von Mises distribution with mean 𝜇IG (i.e., either 𝜇+ or 𝜇J) 

and concentration 𝜅 by two. That is, the likelihood of each sample 𝜃),M is given by 

 𝑝N𝜃),MO𝑠)P ≡
𝑒S TUVWJNXG,Y*Z[GP\

𝜋𝐼_(𝜅)
 (1) 

where 𝐼_(⋅) is the zero-order modified Bessel function. Overall, this leads to the following generative 

model of the task: 

 

𝑠_	~	ℬN𝑝IdP	

𝑠)|𝑠)*+, 𝜏 ∼ ℬNℎ|IG*IGgh|(1 − ℎ)+*|IG*IGgh|P	

𝜃),M|𝑠), 𝜅, 𝜇+:J ∼ 1
2i 𝒱ℳN2	𝜇IG, 𝜅P 

(2) 

where ℬ(⋅) denotes a Bernoulli random variable, 𝒱ℳ(⋅,⋅) a von Mises random variable, and 𝑝Id the 

a-priori belief that 𝑠_ = 1. 

 This model relates to the two experimental conditions as follows. In the cue-based condition, 

the hidden state 𝑠) identifies the category (A or B) associated with the stimulus sequence Θ) ≡

m𝜃),+:FGn observed in each trial. In the outcome-based condition, the hidden state 𝑠) describes the 

mapping between the response key (left or right) and the category (A or B) of the stimulus sequence 

it generates. The left response key draws stimulus sequences from category A and the right key 

from category B if 𝑠) = 1, and vice versa if 𝑠) = 2. In both conditions, the stimulus sequence Θ) at 

trial 𝑡 informs about the current hidden state 𝑠). 

Bayes-optimal decision-making 

Let us first derive the Bayes-optimal noise-free decision-making strategy without any bias. Let 𝑔) ≡

𝑝(𝑠) = 1|Θ+:)*+) denote the prior belief that 𝑠) = 1 in the 𝑡th trial after having observed stimulus se-

quences in trials 1 to 𝑡 − 1. Upon observing the stimulus sequence 𝜃),+:FG, this belief is updated by 

Bayes’ rule, resulting in 

𝑔p) ≡ 𝑝(𝑠) = 1|Θ+:)) ∝ 𝑔)r𝑝N𝜃),MO𝑠) = 1P
FG

Ms+

∝
1

1 + 𝑒*WS	ℒG	v	wUx
yG

+*yG
\
 (3) 
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where all proportionalities are with respect to 𝑠), we have used the above expression for the likeli-

hood, and have defined the sample sequence evidence for 𝑠) = 1 by 

 ℒ) =z𝜅 Wcos W2N𝜃),M − 𝜇+P\ − cos W2N𝜃),M − 𝜇JP\\
FG

Ms+

 (4) 

If we define the prior log-odds belief by 𝐿) ≡ log(𝑔)/(1 − 𝑔))), then the update simplifies to 

 𝐿�) = 𝐿) + ℒ) (5) 

 We find the prior belief 𝑔)v+ for the next trial 𝑡 + 1 from the posterior belief 𝑔p) at trial 𝑡 by the 

following marginalization: 

 𝑔)v+ = z 𝑝(𝑠)v+ = 1|𝑠))𝑝(𝑠)|Θ+:))
IG∈{+,J}

= ℎ(1 − 𝑔p)) + (1 − ℎ)𝑔p) (6) 

In log-odds, this corresponds to 

 𝐿)v+ = ℱN𝐿�)P ≡ 𝐿�)	+	log �
1 − ℎ
ℎ

+ 𝑒*��G� − log �
1 − ℎ
ℎ

+ 𝑒v��G� (7) 

Bayes-optimal inference would initially use 𝑔p_ = 𝑝Id , and then alternate between the two above steps 

to update the belief across successive trials. 

 Optimal decisions in the cue-based condition correspond to choosing according to 𝑔p) in the 𝑡th 

trial, which is the belief after having observed the corresponding stimulus sequence. 𝑔p) ≥ 1/2 implies 

that 𝑠) = 1 is more likely than 𝑠) = 2, and should trigger the action associated with 𝑠) = 1. 𝑔p) < 1/2 

implies the opposite, and thus should trigger the action associated with 𝑠) = 2. In the outcome-based 

condition, the relevant belief that should trigger the action in the 𝑡th trial is whether 𝑔)v+ ≥ 1/2 or 

𝑔)v+ < 1/2. However, by the above update equations we can guarantee that 𝑔)v+ ≥ 1/2 as long as 

𝑔p) ≥ 1/2 (and ℎ	 < 	1/2), such that we can equally cast choices based on the value of 𝑔p) – as in the 

cue-based condition. Thus, we can use the same Bayes-optimal decision-making model to analyze 

both conditions on equal footing. 

Bayes-optimal decision-making corrupted by noise and biases 

We assume noise arising at three points of the inference process: noise 𝜎inf during inference itself 

(i.e., the cognitive process of accumulating the evidence provided by stimuli in each trial), noise 𝜎sel 

during action selection, and transition noise 𝜎tr when computing ℱ(⋅) to transition from 𝐿�) to 𝐿)v+. In 

addition to noise, we assume four biases: 1. an inference leak 𝛾 while processing the stimulus se-

quence, 2. a response bias 𝑏, 3. response lapses occurring with probability 𝑝lapse, and 4. an alterna-

tive heuristic 𝒢(⋅) to the Bayes-optimal transition function ℱ(⋅). Let us discuss below their exact for-

mulations, in turn. 

 Starting with the leak 𝛾, we assume the accumulation of evidence provided by individual stimuli 

within a sequence to be leaky, which we formulate by changing ℒ) to 
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 ℒ)
� =z𝜅	𝛾FG*M Wcos W2N𝜃),M − 𝜇+P\ − cos W2N𝜃),M − 𝜇JP\\

FG

Ms+

 (8) 

This corresponds to, at the onset of each stimulus 𝜃),M, down-weighting (for 𝛾 < 1) or up-weighting 

(for 𝛾 > 1) of the evidence accumulated so far by 𝛾. Bayes-optimal evidence accumulation corre-

sponds to 𝛾 = 1. 

 Inference noise 𝜎inf reflects any noise in the inference process during evidence accumulation. 

As we have previously shown1, accumulating 𝑛) stimuli introduces 𝑛) samples of random noise. If 

each of these noise samples is normally distributed with zero mean and variance 𝜎infJ , then the overall 

noise added at the end of a stimulus sequence would have variance 𝑛)	𝜎infJ . However, due to re-

weighting the evidence accumulated from earlier stimuli by 𝛾, earlier samples of noise also get re-

weighted, yielding noise variance 𝜎infJ 	𝛾), where 𝛾) is given by 

 𝛾) =z𝛾J(FG*M)
FG

Ms+

 (9) 

Overall, this turns the deterministic sample processing sum of Eq. (5) into a stochastic draw: 

 𝐿�)	|	ℒ)
�, 𝐿) ∼ 𝒩N𝐿) + ℒ)

�, 𝜎infJ 	𝛾)P (10) 

 Transition noise 𝜎tr has a similar effect on the transition function ℱ(⋅) by adding a single sample 

of zero-mean noise with variance 𝜎trJ, turning Eq. (7) into a stochastic draw: 

 𝐿)v+	|	𝐿�) ∼ 𝒩NℱN𝐿�)P, 𝜎trJP (11) 

 For some model variants, we replace the Bayes-optimal transition function ℱ(⋅) by a two-pa-

rameter heuristic 𝒢(⋅) 

 𝒢N𝐿�)P = 𝜁	𝐿�) + 𝜂	signN𝐿�)P (12) 

where sign(⋅) ∈ {−1,0, +1} is the sign function, 𝜁 ∈ [−1,+1] parameterizes the multiplicative gain of 

the transition, and 𝜂 the additive bias of the transition. This heuristic transition function 𝒢(⋅) acts as 

a drop-in linear replacement for ℱ(⋅), while leaving all other model components unchanged. 

Selection noise 𝜎sel does not perturb the inference process itself, and only affects action se-

lection. We model such noise by adding 𝜀) ∼ 𝒩N0, 𝜎selJ P to each 𝐿�). Furthermore, the decision-maker 

might feature a response bias, which we model by comparing the noisy log-odds belief to a non-zero 

threshold value 𝑏 rather than the Bayes-optimal 𝑏∗ = 0. Also, we assume a possible bias toward 

repeating the previous action 𝑟)*+, which we model by a lapse bias probability 𝑝lapse with which the 

decision-maker blindly repeats the previous action rather than choosing according to the current 

posterior belief. Overall, this leads to response repetition (i.e., 𝑟) = 𝑟)*+) with probability 𝑝lapse, and 

otherwise responses determined by 

 𝑟) = �1 if	𝐿�) + 𝜀) + 𝑏 ≥ 0
0 otherwise

 (13) 



Page 16 of 21 

 The introduction of transition noise introduces a subtle difference between noisy inference in 

the cue-based and the outcome-based conditions. Indeed, the transition noise is applied after action 

selection in the cue-based condition, whereas it perturbs the belief before action selection in the 

outcome-based condition. Because these perturbations can flip the sign of the log-odds belief, they 

can theoretically impact action selection in the outcome-based condition. However, in practice, tran-

sition noise 𝜎tr was found to be negligible during Bayesian model selection, and we thus focus on 

models without transition noise (𝜎tr = 0) in the main text. 

Fitting the model to observed behavior 

For a sequence of 𝑇 trials, fully specified by the sequence of stimuli Θ) in each of the 𝑡 = 1,… , 𝑇 

trials, we observed a corresponding sequence of responses, 𝑟+, … , 𝑟�. We here describe how we 

found the model parameters 𝜙 that resulted in the best match between the observed response se-

quence and the response probabilities predicted by the model, 𝑝(𝑟+:�|Θ+:�, 𝜙). In its full form, the 

model has parameters 𝜙 = m𝜎inf, 𝜎sel, 𝜎tr, ℎ, 𝛾, 𝑏, 𝑝lapsen (with ℎ replaced by 𝜁 and 𝜂 for the heuristic 

transition function), where we always assume an unbiased initial belief 𝐿_ = 0. We also fitted reduced 

models that remove certain components by fixing their corresponding parameter values to zero. For 

example, a model without selection noise would correspond to 𝜎sel = 0. 

 We found best-fitting parameter values by sampling from the Bayesian posterior over param-

eters using particle Monte Carlo Markov Chain (MCMC) methods2. These methods use standard 

MCMC methods to sample from the parameter posterior, but replace computation of the parameter 

likelihood 𝑝(𝑟+:T|Θ+:T,𝜙) – not possible in closed form – with a noisy but unbiased approximation of 

this likelihood by a particle filter. As MCMC method we used the adaptive mixture Metropolis method3 

that adapts its proposal distribution in an initial burn-in period to achieve favorable acceptance ratios. 

In the remainder of this section, we describe how we approximated the parameter likelihood with a 

particle filter. 

What we want to compute 

Combining noisy evidence accumulation and transition, two consecutive 𝐿�) can be related by 

 𝑝N𝐿�)	O	𝐿�)*+, 𝜙P = 𝒩N𝐿�)	|	ℱN𝐿�)*+P + 	ℒ)
�, 𝜎�J + 𝜎MF�J 	𝛾)P (14) 

where the above is implicitly conditional on Θ) through ℒ)
�. These 𝐿�) predict observed responses 𝑟) 

according to the following equation: 

 𝑝N𝑟) = 1O𝐿�), 𝑟)*+, 𝜙P = N1 − 𝑝lapseP �ℐN𝐿�) + 𝜀) + 𝑏 ≥ 0P	𝑝(𝜀))	d𝜀) + 𝑝w¢£V¤	ℐ(𝑟)*+ = 1) (15) 

where ℐ(𝑎) is the identifier function that is one if 𝑎 is true, and zero otherwise. 

We would like to track the posterior belief 𝑝N𝐿�+:)O𝑟+:), 𝜙P recursively by 
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 𝑝N𝐿�+:)O𝑟+:), 𝜙P = 𝑝N𝐿�+:)*+|𝑟+:)*+, 𝜙P
𝑝N𝑟)O𝐿�), 𝑟)*+, 𝜙P𝑝N𝐿�)|𝐿�)*+, 𝜙P

𝑝(𝑟)|𝑟+:)*+, 𝜙)
 (16) 

 𝑝(𝑟+:)|𝜙) = 𝑝(𝑟+:)*+|𝜙)𝑝(𝑟)|𝑟+:)*+, 𝜙) (17) 

where 

 𝑝(𝑟)|𝑟+:)*+, 𝜙) = ¦𝑝N𝑟)O𝐿�), 𝑟)*+, 𝜙P	𝑝N𝐿�)O𝐿�)*+, 𝜙P	𝑝N𝐿�)*+O𝑟+:)*+, 𝜙P	d𝐿�)	d𝐿�)*+ (18) 

Given the above model assumptions, this is unfortunately not possible in closed form. Therefore, we 

will approximate it by a particle filter. 

Particle filter specification 

The particle filter maintains 𝐾 particle trajectories 𝐿+:)+ ,… , 𝐿+:)¨  that in combination approximate 

𝑝N𝐿�+:)O𝑟+:), 𝜙P. It relies on introducing the importance densities 𝑞(𝐿�+|𝑟_:+, 𝜙) for the first trial, and 

𝑞N𝐿�)O𝐿�)*+, 𝑟), 𝜙P for all trials thereafter, which are used to sample the particles across trials (see next 

section, Sampling the importance densities). Here, 𝑟_ is the response provided before any evi-

dence has been presented. The associated importance weights are given by 

 𝑤+N𝐿�+P =
𝑝N𝑟+O𝐿�+, 𝑟_, 𝜙P	𝑝N𝐿�+O𝜙P

𝑞N𝐿�+O𝑟_:+, 𝜙P
 (19) 

 𝑤FN𝐿�)*+:)P =
𝑝N𝑟)O𝐿�), 𝑟)*+, 𝜙P	𝑝N𝐿�)O𝐿�)*+, 𝜙P

𝑞N𝐿�)O𝐿�)*+, 𝑟)*+:), 𝜙P
 (20) 

The particle filter operates as follows. In the first trial, it samples 𝐿+« ∼ 𝑞N𝐿�+O𝑟+, 𝜙P, computes the as-

sociated weights 𝑤+N𝐿+«P, and sets 𝑊+
« ∝ 𝑤+N𝐿+«P such that ∑ 𝑊+

«
« = 1. It then resamples the 𝐿+« ’s 

according to the weights 𝑊+
« to obtain 𝐾 equally-weighted particles 𝐿®+« . For all further trials, 𝑡 ≥ 2, 

the particle filter first samples 𝐿)« ∼ 𝑞N𝐿�)O𝐿®)*+« , 𝑟)*+:), 𝜙P and sets 𝐿+:)« ← N𝐿®+:)*+« 𝐿)«P, where 𝐿®+:)*+«  is the 

trajectory from 1 to 𝑡 − 1 associated with the particle  𝐿®+)*+. Based on these samples, it computes the 

weights 𝑤)(𝐿)*+:)« ) and sets 𝑊)
« ∝ 𝑤)N𝐿)*+:)« P such that ∑ 𝑊)

«
« = 1. It the resamples the 𝐿)«  according 

to the weights 𝑊)
« to obtain 𝐾 equally-weighted particles 𝐿®)« . 

 After 𝑡 trials, the densities 𝑝N𝐿�+:)O𝑟+:), 𝜙P and 𝑝(𝑟)|𝑟+:)*+, 𝜙) are approximated by 

 �̂�N𝑑𝐿�+:)O𝑟+:), 𝜙P =z𝑊)
«𝛿�h:G² N𝑑𝐿

�+:)P
«

 (21) 

 �̂�(𝑟)|𝑟+:)*+, 𝜙) =
1
𝐾
z𝑤)N𝐿)*+:)« P
«

 (22) 

We use the latter to estimate the marginal likelihood 𝑝(𝑟+:�|𝜙) by 
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 �̂�(𝑟+:�|𝜙) =r�̂�(𝑟)|𝑟+:)*+, 𝜙)
�

)s+

 (23) 

This estimate is unbiased, and thus suitable for use in MCMC methods2. 

Sampling the importance densities 

What remains is to define the importance densities and to describe how to sample from them. The 

optimal choice for these densities is given by 

 𝑞N𝐿�+|𝑟_:+, 𝜙P = 𝑝N𝐿�+O𝑟_:+, 𝜙P ∝ 𝑝N𝑟+O𝐿�+, 𝑟_, 𝜙P𝑝(𝐿�+|𝜙) (24) 

 𝑞N𝐿�)O𝐿�)*+, 𝑟)*+:), 𝜙P = 𝑝N𝐿�)O𝐿�)*+, 𝑟)*+:), 𝜙P ∝ 𝑝N𝑟)O𝐿�), 𝑟)*+, 𝜙P𝑝N𝐿�)O𝐿�)*+, 𝜙P (25) 

Let us now consider the first and the remaining trials separately. 

Particle sampling and weights for the first trial of each block 

To model response lapses, we draw 𝑧+ ∼ ℬN𝑝lapseP, and declare the trial a lapse trial if 𝑧+ = 1. For 

lapse trials, the choice 𝑟+ is not informative about 𝐿�+, such that 

 𝐿�+|(𝑧+ = 1) ∼ 𝒩N𝜅	ℒ+
�, 𝜎infJ 	𝛾+P, (26) 

where we have assumed 𝐿_ = 0, as discussed above. For non-lapse trials, where 𝑧+ = 0 (implicit in 

the below notation), 𝑟+ stochastically constraints the value of 𝐿�+ through the likelihood 𝑝(𝑟+|𝐿�+, 𝜙). To 

perform tractable sampling from the posterior 𝑝N𝐿�+O𝑟+, 𝜙P, we split the link between 𝐿�+ and 𝑟+ by 

introducing the auxiliary variable 𝑑+ = 𝐿�+ + 𝜀+ + 𝑏, such that 

 𝑝N𝐿�+O𝑟+, 𝜙P = �𝑝N𝐿�+O𝑑+, 𝜙P	𝑝(𝑑+|𝑟+, 𝜙)	d𝑑+. (27) 

This shows that we can sample 𝐿�+|𝑟+ by first sampling 𝑑+|𝑟+, and then 𝐿�+|𝑑+. For our model, 

𝑝(𝑑+|𝑟+,𝜙) turns out to be given by 

 

 𝑝(𝑑+|𝑟+,𝜙) ∝ 𝑝(𝑟+|𝑑+)	𝑝(𝑑+|𝜙) = 𝒩N𝑑+	O	ℒ+
� + 𝑏, 𝜎infJ 	𝛾+ + 𝜎selJ P �

	ℐ(𝑑+ ≥ 0) if	𝑟+ = 1
	ℐ(𝑑+ < 0) otherwise (28) 

where we found 𝑝(𝑑+|𝜙) by marginalizing 𝑝N𝑑+O𝐿�+, 𝜀+, 𝜙P	𝑝N𝐿�+O𝜙P	𝑝(𝜀+|𝜙) over 𝐿�+ and 𝜀+. The above 

is a truncated normal distribution, for which efficient sampling methods exist. 

Given 𝑑+, 𝑝(𝐿�+|𝑑+, 𝜙) becomes normally distributed, and is given by 

 

𝑝N𝐿�+O𝑑+, 𝜙P ∝ 𝑝N𝑑+O𝐿�+, 𝜙P	𝑝N𝐿�+O𝜙P

∝ 𝒩 ´𝐿�+µ
𝜎infJ 	𝛾+

𝜎selJ + 𝜎infJ 	𝛾+
(𝑑+ − 𝑏) +

𝜎selJ

𝜎selJ + 𝜎infJ 	𝛾+
ℒ+
�, 𝜎sel

J 	𝜎infJ 	𝛾+
𝜎selJ + 𝜎infJ 	𝛾+

¶ (29) 

which is again easy to sample from. 

Given the above importance densities, the particle weights for the first trial are given by 

𝑤+N𝐿�+P = 𝑝(𝑟+|𝑟_, 𝜙), and are thus independent of the sampled values of 𝐿�+. Using the 𝐿�+ → 𝑑+ → 𝑟+ 

split, as before, we find these weights to be given by 
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𝑤+N𝐿�+P = 𝑝(𝑟+|𝑟_, 𝜙) =z𝑝(𝑧+)�𝑝(𝑟+|𝑑+, 𝑧+)	𝑝(𝑑+|𝜙)	d𝑑+
¸h

	

														= 𝑝lapse	ℐ(𝑟+ = 𝑟_) + (1 − 𝑝lapse)

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

Φ

⎝

⎛ 𝜅	ℒ+
� + 𝑏

À𝜎selJ + 𝜎infJ 	𝛾+⎠

⎞ if	𝑟+ = 1

1 − Φ

⎝

⎛ 𝜅	ℒ+
� + 𝑏

À𝜎selJ + 𝜎infJ 	𝛾+⎠

⎞ otherwise

 
(30) 

This completes specifying all the components for particle sampling and computing the particle 

weights for the first trial. 

Particle sampling and weights for all remaining trials 

For all remaining trials of each block (𝑡 ≥ 2), we again draw response lapse trials according to 𝑧) ∼

ℬN𝑝lapseP. If 𝑧) = 1, then 𝑟) is uninformative about 𝐿�), such that we draw log-odds beliefs using a non-

truncated distribution: 

 𝐿�)	|	𝐿�)*+, (𝑧) = 1) ∼ 𝒩NℱN𝐿�)*+P + ℒ)
�, 𝜎trJ + 𝜎infJ 	𝛾)P (31) 

For non-lapse trials, when 𝑧) = 0 (implicitly conditioned on below), we again introduce the auxiliary 

variable 𝑑) = 𝐿�) + 𝜀) + 𝑏 to draw from 𝐿�)|𝐿�)*+, 𝑟) using 

 𝑝N𝐿�)|𝐿�)*+, 𝑟),𝜙P = �𝑝N𝐿�)O𝐿�)*+, 𝑑),𝜙P	𝑝N𝑑)O𝐿�)*+, 𝑟), 𝜃P	d𝑑) (32) 

which allows us to first sample 𝑑)|𝐿�)*+, 𝑟), and then 𝐿�)|𝐿�)*+, 𝑑). To find 𝑝N𝑑)O𝐿�)*+, 𝑟),𝜙P, we first note 

that the 𝑝N𝑑)O𝐿�)*+, 𝜙P is by marginalization of 𝑝N𝑑)O𝐿�), 𝜀), 𝜙P	𝑝N𝐿�)O𝐿�)*+, 𝜙P	𝑝(𝜀)|𝜙) given by 

 𝑝N𝑑)|𝐿�)*+, 𝜙P = 𝒩N𝑑)OℱN𝐿�)*+P + ℒ)
� + 𝑏, 𝜎trJ + 𝜎infJ 	𝛾F + 𝜎selJ P (33) 

Using this, we find 𝑝N𝑑)O𝐿�)*+, 𝑟), 𝜙P to be given by 

 

𝑝N𝑑)|𝐿�)*+, 𝑟),𝜙P ∝ 𝑝(𝑟)|𝑑))	𝑝N𝑑)O𝐿�)*+, 𝜙P

= 𝒩N𝑑FOℱN𝐿�)*+P + ℒ)
� + 𝑏, 𝜎trJ + 𝜎infJ 	𝛾F + 𝜎selJ P �

	ℐ(𝑑) ≥ 0) if	𝑟) = 1
	ℐ(𝑑) < 0) otherwise 

(34) 

which is again a truncated normal distribution that can be efficiently sampled from. 

Given 𝑑), 𝑝(𝐿�)|𝐿�)*+, 𝑑),𝜙) becomes normally distributed, and is given by 

 
𝑝N𝐿�)|𝐿�)*+, 𝑑),𝜙P ∝ 𝑝N𝑑)O𝐿�),𝜙P	𝑝N𝐿�)O𝐿�)*+, 𝜙P

= N´𝐿�)µ
N𝜎�J + 𝜎infJ 	𝛾)P(𝑑) − 𝑏) + 𝜎selJ (ℱN𝐿�)*+P + ℒ)

�)
𝜎selJ + 𝜎trJ + 𝜎infJ 	𝛾)

, 𝜎sel
J (𝜎trJ + 𝜎infJ 	𝛾))

𝜎selJ + 𝜎trJ + 𝜎infJ 	𝛾)
¶ 

(35) 

 With the above importance densities, the particle weights for trial 𝑡 are given by 𝑤)N𝐿�)*+:)P =

𝑝N𝑟)O𝐿�)*+, 𝑟)*+, 𝜙P, which evaluates to 
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𝑤)N𝐿�)*+:)P = 𝑝N𝑟)|𝐿�)*+, 𝑟)*+, 𝜙P =z𝑝(𝑧))�𝑝(𝑟)|𝑑), 𝑧))	𝑝N𝑑)O𝐿�)*+, 𝑟)*+, 𝜙P	d𝑑)
¸G

	

																				= 𝑝lapse	ℐ(𝑟) = 𝑟)*+) + N1 − 𝑝lapseP

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

Φ

⎝

⎛ ℱN𝐿�)*+P + ℒ)
� + 𝑏

À𝜎selJ + 𝜎trJ + 𝜎infJ 	𝛾)⎠

⎞ if	𝑟) = 1

1 − Φ

⎝

⎛ ℱN𝐿�)*+P + ℒ)
� + 𝑏

À𝜎selJ + 𝜎trJ + 𝜎infJ 	𝛾)⎠

⎞ otherwise

 
(36) 

This completes specifying all the components for particle sampling and computing the particle 

weights for all remaining trials after the first of each block. 
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