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ABSTRACT

In this study we deal with the mixing problem, which con-
cerns combining the prediction of independently trained lo-
cal models to form a global prediction. We deal with it from
the perspective of Learning Classifier Systems where a set
of classifiers provide the local models. Firstly, we formalise
the mixing problem and provide both analytical and heuris-
tic approaches to solving it. The analytical approaches are
shown to not scale well with the number of local models,
but are nevertheless compared to heuristic models in a set
of function approximation tasks. These experiments show
that we can design heuristics that exceed the performance of
the current state-of-the-art Learning Classifier System XCS,
and are competitive when compared to analytical solutions.
Additionally, we provide an upper bound on the prediction
errors for the heuristic mixing approaches.

Categories and Subject Descriptors: G.1.2 Numerical
Analysis: Approximation — Least squares approximation

General Terms: Performance, Algorithms, Theory.

Keywords: Learning Classifier Systems, Information Fu-
sion.

1. INTRODUCTION

In modern Michigan style Learning Classifier Systems
(LCS), predictions of classifiers have been mixed to give a
“system prediction”, which is in contrast to using the pre-
diction of single classifiers (for example, SCS [8]). In fact,
the distinction is the one of mixed model prediction vs. local
model predictions. Mixed model prediction requires the pre-
diction of the local model to be combined in some way. We
will call the problem of how to combine these local models
the “mixing problem”.

In this paper we will formalise the mixing problem and will
introduce a set of analytical and heuristic solutions. We will
concentrate on model architectures where the local models
are trained independently of each other, and then combined
to form the global model. To our knowledge there exists no
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systematic study with respect to LCS of how to form a global
model from local models with such a model architecture!.

The motivation behind this study is to improve the predic-
tion quality of any system using such a model architecture,
as seen in XCS and its derivatives. XCS was introduced
by Wilson in [13] for use in classification and reinforcement
learning and was later also extended to function approxima-
tion tasks [14], tasks that both classification and reinforce-
ment learning 2 can be reduced to. Just as he did, we will
interpret all local models as function approximators, and
will define the global model prediction as a combination of
the predictions of all relevant local models. Wilson defined
his mixing model in [13] as follows:

“There are several reasonable ways to determine
[the global prediction] P(a;). We have experi-
mented primarily with a fitness-weighted aver-
age of the prediction of classifier advocating a;.
Presumably, one wants a method that yields the
system’s “best guess” as to the payoff [...] to be
received if a; is chosen”,

and he maintains this model for all XCS derivatives without
further discussion. The fitness he is referring to is a complex
measure of the quality of a classifier. In this study we do
not aim at redefining the fitness of a classifier but rather we
question whether this fitness is really the best measure to
use to combine the prediction of different classifiers.

One might argue that the genetic algorithm in XCS only
relies on the fitness of classifiers, which subsequently de-
pends on the local but not the global prediction, and hence
mixing is only important for the global prediction once the
GA has found a suitable set of classifiers. This might be

Naively, one could think that the model we are describ-
ing is the mixture-of-experts (MoE) architecture [10]. Even
though it is closely related, it differs in some significant
points. Foremost, there is a strong interaction between
training the experts in MoE and combining them. If trained
by the EM-algorithm [4], the optimal mixing is evaluated
based on the current states of the experts in the expectation
step, and both mixing and experts are modified in the max-
imisation step. In the model we are considering, the mixing
does not influence the training of the experts. Hence, we
do have a bilateral relation between experts and the mix-
ing model in MoE, but only a unilateral relation in the our
model. The redistribution of classifiers is performed by a
genetic algorithm rather than by the maximisation step of
the EM-algorithm.

%In the case of reinforcement learning tasks, XCS acts as an
adaptive function approximator for the action-value func-
tion, while it uses Q-Learning to update this function.



true in tasks such as function approximation and classifica-
tion. However, when using XCS for reinforcement learning
tasks, the reinforcement learning algorithm strongly inter-
acts with the global prediction model, and thus relies on an
accurate mixing model. Hence, the mixing model not only
determines the final prediction quality for function approxi-
mation and classification tasks, but is particularly influential
in reinforcement learning tasks.

Paper Structure: To study mixing we will first intro-
duce a formal model that allows us to define the mixing
models, which is our aim, and how we can evaluate the per-
formance of a mixing model. We continue by describing lin-
ear mixing models and their complexity which makes them
unsuitable for real-world applications. Next, mixing models
based on heuristics are introduced, and are then compared
to each other and to mixing based on linear models in the
following experimental section. Finally, our results are dis-
cussed and brought into the wider perspective of different
applications of LCS.

2. FORMALISING MIXING

Let f be a target function that maps some input space
X into the reals R. From this target function we have a
finite number of N samples {(z1, f(z1)),..., (zN, f(zN))}.
We want to find a model f : X — R of f that minimises
the squared error over these samples, that is we want to
minimise

N . 2
> (flwn) = fan)) (1)
n=1

We will describe how LCS with independent classifiers
constructs f by combining a set of local models, given by
the classifiers.

2.1 Independent Local Models

We have a set of K classifiers, each of which describes a
local model of the target function. For each classifier k €
{1,..., K} its locality is determined by the set of inputs
X, C X that it matches. The local model of a classifier k is
only built for the inputs that are in X%. Hence, a classifier
provides the local model fi : X — R. This model is usually
parametric, but we do not need to specify the parameters
here as they are of no relevance to this paper. Note that this
study applies to any form of local models, such as simple
averagers, linear regression or neural networks.

The aim of each classifier is to minimise the squared error
over its matched inputs; that is, it wants to minimise

i\f: 1x, (zn) (f(»’cn) - fk(l’n))2 ,

where 1y, is the indicator function for set X that returns
lx,(z) = 1if x € A and 1lx,(z) = 0 otherwise. Even
though we are restricting ourselves to 0/1 matching, all the
concepts introduced here are still valid when 1x, returns
real values of the range [0,1]. The local models of the clas-
sifiers are independent in the sense that they are trained
independently of the models built by other classifiers, even
if those classifiers match the same inputs.

2.2 Mixing Local Models

In order to get a model over the whole input space we need
to combine the local models. We will do this by defining K

parametric mixing functions {¢y : X x R — R}, with
shared P real-valued parameters, denoted 6ys, that deter-
mine for each input the influence of each of the local models
to the global model f.

Hence, the global model is given by

Z Lx, (@

Thus, for each input x the global model is the sum of the
matching local models weighted by the mixing functions.
All K mixing functions in combination describe the mixing
model.

2.3 ldentifying Good Mixing Models

As we now have all the definitions that we require, we can
state what constitutes a good mixing model. As previously
described, we want to minimise the squared error (1) of the

global model f. Hence, given a set of local models {fi }/<;
and our definition of how we mix these local models (2), our
aim becomes to find a mixing model {t; }5_; that minimises
the global squared error (1) which, when substituting (2) for

f, is given by

N
min f(zn)
O n

n=1

Z]-Xk mn 'l/)k(x'rua]\l)fk(fcn)) . (3)

k=1

We will continue by describing which mixing model struc-
tures allow us to find a closed-form solution to the above
problem.

2.4 Analytical Solutions

We can see from (2) that the global prediction for a certain
input is a linear combination of 1x,, fk, and 9. Addition-
ally, both 1x, and fk are independent of ;. Hence, given
that each v are linear with respect to 05s, the global model
(2) is also linear with respect to these parameters. There-
fore, solving (3) is a linear least-squares problem that has
an analytical solution.

However, if the 1’s are non-linear with respect to €
we have a non-linear least-squares problem for which there
exists no general analytical solution. Therefore, if we want
to find an analytical solution we need to assume the mixing
functions to be linear. In the next section we will discuss
what such a model may look like, and how such a model
allows us to find a close-form solution to (3).

3. LINEAR MIXING MODELS

The most general form of linear mixing model is to have
a set of P parameters {akp};::l per mixing function, and an

equal number of basis functions {9, : X — R};_; that map
the inputs into the reals. The linear mixing function ¥y is
defined as

P
:C 9M Z 19p akp7 (4)
p=1

where 603 = {au,} is the set of all parameters for the mixing
model. Hence, the problem (3) becomes

i3 () - 33 (ot |
(5)



As this expression is a linear least squares problem, we
can find its solution by some least squares method or an
approximation to it, as we will elaborate in the next section.

3.1 Mixing by Least Squares

Given that we have all our input/output pairs available
at the same time, and have access to all local models, we
can minimise (5) directly by matrix inversion. However,
such an approach is of computational and space complex-
ity O((KP)?) and thus does not scale well with the number
of local models. In addition, it only is applicable if all in-
put/output pairs are available at once.

Given that we have an incremental learner, XCS, we need
to resort to recursive least squares which updates the model
with every additional input/output pair. Unfortunately, this
method maintains and updates the covariance matrix for
each input/output pair at the computational and space cost
of O((K P)?) and therefore does not scale well either. Addi-
tionally, it does not consider that the local models fk are also
updated incrementally with every additional input/output
pair and therefore influence the past. Consequently, we are
not able to find the exact solution to (5) by recursive least
squares.

3.2 Gain Adaptation Approximations

Methods of gain adaptation approximate the least squares
solution by only maintaining the diagonal of the covariance
matrix rather than keeping the whole matrix, and hence
scale linearly with the number of local models. Probably
the best known variants of gain adaptation are K1, K2 and
IDBD, developed by Sutton [12]. As they do not keep in-
formation on how the different components of the inputs
interact, they cannot be expected to perform well when this
interaction is crucial, such as when applied to multivariate
linear regression. This observation was, for example, con-
firmed by Lanzi et al. [11], where gain adaptation did not
perform much better than gradient descent when applied to
training the local models of classifiers.

When searching good parameters for the mixing model we
are particularly interested in how the different local models
interact. Hence, the correlation between the different com-
ponents of the input® are certainly important. Therefore,
we do not expect gain adaptation methods to perform well
when applied to our problem.

In summary, the least squares method does not scale well,
and its approximations are expected to feature bad perfor-
mance. Hence, the use of analytical solutions to the mixing
problem might not be applicable to real world problems.
Therefore, we will introduce a set of heuristics that we will
show to come close to the quality of analytical solutions and
perform significantly better than currently used heuristics.

4. HEURISTIC MIXING MODELS

The current (implicit) approach in LCS with indepen-
dently trained classifiers is based on heuristic mixing. In this
section we will introduce some new heuristics and will com-
pare them to the approach used in XCS and its derivatives.
They are all based on a weighted average of the predictions

3In case of the mixing model, the components of the input
to the gain adaptation methods are the combination of in-
dicator functions, values of the local models, and the basis
functions 9.

of the local models and differ only in how they measure the
prediction quality of the local models.

Throughout the section we will assume the local model
of a classifier to be linear. Let {¢; : X — R}Z, be a
set of L basis functions that map the input space into the
reals and in combination form the feature column vector
¢(z) = (¢1(x),...,¢(x)). We denote the transpose of
a vector v by v'. Let wy € R* be the weight vector that
defines the parameters of the local model of classifier k. The
prediction of classifier k is given by

fr(z) = ¢(x) w, VeeX, k=1,... K,

which is the inner product of the features of state  and the
parameters of classifier k. The parameters are implicit in f.
Each classifier minimises the squared error over the inputs
that it matches; that is, it aims to find wy such that

min 3 1, (x) (f(2) — (x)'wr)’

This problem is a linear weighted least squares problem and
we have given an extended LCS-related discussion on how
to solve it in [7].

The heuristics introduced below do not directly depend
on the assumption of linearity of the classifier model. How-
ever, if other local model types are to be used, the model
quality measures introduced below need to be reformulated
adequately.

4.1 Mixing by Weighted Average

For each state x € X each matching classifier provides a
prediction for the value of f(z), according to its best knowl-
edge. Hence, it is sensible to assume that the true value of
f(x) is somewhere in between the lowest and the highest of
those predictions. Therefore, all the heuristics that we will
use ensure that the mixed global prediction is bounded from
above and below by the highest and lowest local prediction
respectively.

Let {7 : & x RT — RI}-, be a set of functions, one
for each classifier, that map the input space into the non-
negative reals, based on a set of P shared scalar parameters.
We define the mixing functions to be

) e L7} R— (6)
21 Lo (2)ve (2, 00r)

Combining the above with (2), we get the global prediction

Fa) = ko L (@) @, On0) fi(@)

25:1 19(;; ()vE(z, 00)
which is the weighted average of the predictions of all match-
ing classifiers. The magnitude of v (z,0r) determines the
influence of classifier k to the prediction of f(z). Thus,
i (z, 00 ) needs to reflect our estimate of the quality of the
prediction fi(x).

Note that the mixing functions . are non-linear with
respect to the mixing parameters 05;. Consequently, there
is no analytical solution to the least squares problem (3).
There might not even be a unique minimum. Hence, we do
not attempt to solve (3) but give some heuristics for possible
Y&’s below.

vzex, (7)



4.2 Bounding the Global Model Error

Before discussing several measures 7 for use in (6) for the
prediction quality of a local model in the next sections, let
us emphasise their importance through the following obser-
vation about the local squared errors:

THEOREM 4.1. When using weighted averaging mizing,
for all x € X, the squared prediction error is bounded from
above by the weighted sum of squared prediction errors of the
local models, where the weights are those used to mix these
models. That is

(f) — F@)" < i L, (@) (o, O) (&) = ful)

PROOF SKETCH. (full proofin [6]). Observing that 1x, 1y
describes a K-dimensional simplex for each z € X', the re-
sult follows from the convexity of -2 and Jensen’s Inequality
applied to (f(z) — f(z)) with f expanded. [

This theorem is independent of the form of the local mod-
els, that is, it also applies to non-linear local models. Addi-
tionally, it naturally extends to all data pairs:

COROLLARY 4.2. When using weighted averaging mizing,
we can bound the sum of squared errors for a set of inputs
from above by

S (o) - o)’ <
n:1K N

S5 L (@), Oae) (Fan) — Fien))

k=1n=1

Hence, the global model error is never worse than the
weighted sum of errors of all local models, and is kept mini-
mal by assigning a low weight to classifiers whose local model
can be expected to have a high prediction error. This again
emphasises the importance of having a good prediction qual-
ity measure for the local models.

4.3 Inverse Variance Mixing

The unbiased variance estimate of the prediction of the
local linear model of classifier k is given by

N
6= (—L +> 1x, (xn)>

and is therefore proportional to the sum of squared predic-
tion errors, where L refers to the size of the feature vector.
As we can expect classifiers with a lower variance estimate to
given better predictions on average, we can use the inverse
of the variance as a measure for the quality of the prediction
of a classifier’s model.

We define the inverse variance mixing model to be a weight-
ed averaging mixing model with the classifier quality mea-
sures being defined input-independently by ~x(x,0r) =
(&2)71. Hence, the parameter vector of this mixing model is
formed by the unbiased variance estimates Oy =
{6%1,...,6%}. In [7] we show how the variance can be esti-
mated in a batch and incrementally, and how this form of
mixing relates to the principle of maximum likelihood.

71N

>~ L) (F@) ~ fula))

4.4 Confidence Mixing

Under the standard assumption of a normally distributed
constant-variance zero-mean model error of the linear clas-
sifier model its prediction is also normally distributed [7].
As the confidence interval of a distribution is the distance
from the mean at which the probability density accumulates
a certain mass, this interval is in the case of the normal dis-
tribution proportional to the standard deviation?. In our
case the standard deviation of the prediction is given by

N —1
var (mm)) = (62«#(1)' (Z 1, (zn>¢<wn>¢(mn)'> ¢<z)> ;
n=1

where 67 is the unbiased variance estimate of classifier k,
as introduced in the last section. The inverted sum inside
the brackets on the right-hand side is the covariance matrix
of the feature vectors. In [7] we show how this term can be
updated incrementally.

The confidence of the prediction gives input-dependent
information of how certain the local model is about its pre-
diction. As it is dependent on the input, we can expect
it to give a more fine-grained information than the vari-
ance of the classifier. A low confidence interval indicates a
high confidence in the given prediction. Therefore, we de-
fine the confidence mixing model to be an averaging mixing
model with the quality measure of a classifier being given

by vk(x,0nr) = (var (fk (:c))) /2. The parameters of this
mixing model are on one hand the variance estimates of the
classifier and on the other hand the covariance matrices of
the feature vectors. As the latter can also be used in the re-
cursive least squares algorithm to update the local model of
the classifier, the parameters are shared between the mixing
model and the local models.

Note that in contrast to the inverse variance mixture model
the confidence measure relies on the assumption of the local
model error being normally distributed and of constant vari-
ance. Therefore its performance relative to inverse variance
mixing depends upon this assumption holding.

4.5 Maximum Confidence Mixing

Given that the predictions of the local models are Gaus-
sian, mixing them by non-negative weights that sum up to
1 results in a Gaussian mixture. Our aim in maximum con-
fidence mixing is to minimise the confidence interval of this
mixture and subsequently maximise the confidence of the
global model prediction.

Let k be the classifier with the highest confidence for pre-
dicting f(z). In other words, this classifier has the least
spread probability density function (pdf), which is given by
assigning full weights to the local model with the highest
prediction confidence.

As noted in the previous section, the confidence interval
is proportional to the standard deviation of the classifier’s
normal prediction. Hence, the maximum confidence mixing
model is defined as

el 001) = 1 ifk= %rgmink var (fk (x))
0 otherwise

We can use the knowledge of the confidence interval of a
local model to give the confidence of the prediction of the
global model. This, however, is not as straightforward as it
initially seems. Therefore, we postpone its presentation to
a later paper that is currently in preparation.



The parameters of maximum confidence mixing are the same
as for confidence mixing.

As discussed before, the confidence measure relies on the
normal distribution of the local model error. While confi-
dence mixing provides some smoothing due to a weighted
average of all local predictions according to their prediction
confidence, maximum confidence mixing only considers the
most confident prediction and therefore relies more heavily
on the confidence measure. Consequently, if the local model
error is not normally distributed we can expect maximum
confidence mixing to perform worse than confidence mixing.

4.6 XCS Mixing

XCS and its derivatives also use a weighted averaging mix-
ing model. Their «x’s are given by the fitness of a classifier,
which makes the mixing model closely linked to the defini-
tion of the fitness of a classifier in XCS. As such, it is more
complex than any of the mixing models presented so far.

In XCS most classifier performance and fitness measures
are approximated by gradient descent, which implies an in-
cremental update. Rather than using this incremental up-
date, we will present the convergence points of the gradient
descent update equations. That allows us to calculate them
directly rather than by gradient descent for the purpose of
experimental comparison.

The error of classifier k in XCS is the mean absolute pre-
diction error of its local model, and is given by

-1 N

€k = <z 1x, (l’n)> Z 1, (LEn)

The classifier’s accuracy is some inverse function r(eg) of
the classifier error. This function was initially given by an
exponential, but was later redefined to

1
{1y

where the constant scalar ¢p is the minimum error, the con-
stant « is a scaling factor, and the constant v is a mixing
power factor [2]. The accuracy is constantly 1 up to the er-
ror €p and then drops off steeply, with the shape of the drop
determined by o and v. The relative accuracy is a classifier’s
accuracy for a single input normalised by the sum of the ac-
curacies of all classifiers matching that input. The fitness is
the relative accuracy of a classifier averaged over all inputs
that it matches, that is

v TE g s
F, = 1Xk In i .
* (Z ( )> (sz_llka)n(ew)

n=1

f(@n) = fi(@n)|.

if e <ep

otherwise ’

This fitness measure is used as the quality measure of a clas-
sifier’s prediction, and hence 7, is input-independently given
by vk(z,0nm) = Fy. The parameters of this mixing model
are all performance measures that need to be evaluated to
get the classifier’s fitness.

Note that the magnitude of a relative accuracy depends on
both the error of a classifier, and on the error of the classifiers
that match the same inputs. This makes the fitness of clas-
sifier k dependent on inputs that are matched by classifiers
that share inputs with classifier k, but are not necessarily
matched by this classifier. This might be a good measure
for the fitness of a classifier (where prediction quality is not
all that counts), but we do not expect it to perform well

as a measure of the prediction quality of a classifier. This
expectation is confirmed in the following experiments.

5. EXPERIMENTS

With the following experiments we show that i) XCS mix-
ing performs worse than least square mixing and all of the
other weighted averaging mixing models in nearly all of the
experiments, ii) gain adaptation is not a viable alternative
to least squares mixing, and iii) least squares mixing only
performs better than weighted averaging mixing if the num-
ber of classifiers is small.

All experiments are performed on a fixed set of randomly
distributed classifiers, such that each input is matched by
several classifiers at once. This experimental setup was cho-
sen to investigate the quality of mixing when there is sig-
nificant overlap between the different classifiers that makes
mixing their local predictions necessary. As the GA in XCS
tends to distribute classifiers such that their overlap is min-
imised, we have not applied a GA in any of our experiments.

5.1 Experiment Design

To show performance of the different heuristic mixing
models, we measure their performance in approximating a
set of four commonly used test functions f : R — R as given
in [1, 5, 6]. As a baseline, we compare these approximations
to the performance of least squares and gain adaptation in
combination with linear mixing models.

For each experiment 50 classifiers are generated once and
not changed thereafter. The classifiers are distributed to
match a subinterval of the function domain [0, 1] such that
on average 3 classifiers match any input. Each of the classi-
fier’s linear models is trained independently on the matched
subset of 1000 samples from the target function taken in
regular intervals over the range [0, 1]. For training, the QR-
decomposition inverse RLS implementation [9] is used, with
the covariance matrix initialised to 1072°I. Each experi-
ment is conducted using either features ¢(x) = (1), resulting
in averaging classifiers, or features ¢(x) = (1,z)’, resulting
in classifiers that model a straight line.

The variance and confidence mixture models rely on the
incremental variance estimate procedure we introduced in
[7]. The parameters of XCS and linear mixing are learned
post-hoc, using the fully trained classifier models and the
same sample set as for training the classifiers. The XCS
mixture model constants are set to ¢¢ = 0.01, a = 0.1
and v = 5, as recommended in [2], but experiments with
different settings yielded qualitatively similar results. For
gain adaptation we apply the K1 algorithm due to its best
performance in [12], initialised to u = 0.004, R = 1 and
P(0) = I. Both K1 and least squares mixing are tested on
model (4) with P = 1 and ¢¥1(z) = 1. Least squares mix-
ing is additionally tested on a linear mixing model with the
same basis functions as the classifiers, that is P = L and
9p(x) = ¢p(x). The least squares approach is implemented
by a QR-decomposition inverse RLS algorithm® [9] with an
initial covariance matrix of 1074°I. For the rest of this pa-
per we will refer to inverse variance mixing by InvVar, to
confidence mixing by Conf, to maximum confidence mixing
by MazConf, to XCS mixing by XCS, to gain adaptation

5Both the direct least squares approach and the standard
RLS approach proved numerically too unstable to be used
to train the linear mixing model.



Function Mean Squared Error of Mixing Model
Inv Var Conf  Max Conf  XCS | LS LS-f K1

Blocks 1.0765  1.0956 1.1232 1.4393 0.8980 5.0773
Bumps 0.8305  0.8365 0.9482 1.2135 0.5796 1.9729
Doppler 0.0183  0.0188 0.0213 0.0253 0.0123 0.0358
HeaviSine 0.1690 0.1677 0.3494 0.2664 0.2224 4.3772
Blocks + N(0,1) 1.1286  1.1819 1.1563 1.4531 0.9387 5.2202
Bumps + N(0,0.5) 0.8347  0.8590 0.9697 1.2015 0.5928 2.0256
Doppler + N(0,0.1) 0.0184  0.0190 0.0212 0.0247 0.0129 0.0376
HeaviSine + N(0,1) 0.2035 0.2135 0.3920 0.2719 0.2752 4.5886
Blocks lin 0.5935  0.6341 0.6397 0.8745 | 0.6756 0.4186 5.7835
Bumps lin 0.4408  0.4653 0.5110 0.5913 | 0.3759 0.2382 1.3873
Doppler lin 0.0089  0.0093 0.0104 0.0112 | 0.0080 0.0048 0.0263
HeaviSine lin 0.0231 0.0236 0.0264 0.0349 | 0.1485 0.0736  3.9757
Blocks + N(0,1) lin 0.6558  0.7116 0.8088 0.8747 | 0.7302 0.5379 6.6167
Bumps + N(0,0.5) lin 0.0093  0.0097 0.0111 0.0110 | 0.0087 0.0060 0.0282
Doppler + N(0,0.1) lin ~ 0.0183  0.0189 0.0205 0.0202 | 0.0172 0.0137 0.0363
HeaviSine + N(0,1) lin 0.0562 0.0561 0.0658 0.0579 | 0.2130 0.1916  4.6260

Table 1: Average MSE for the different mixing models over 20 experiments with different classifier distribution
of 50 classifiers and on average 3 classifiers per input. The vertical bar separates the heuristic models from the
linear models. N(0,z) refers to added Gaussian noise with standard deviation z. The features are ¢(z) = (1),
except for lin functions where the features are ¢(z) = (1,z)’. The group of lowest MSE mixing models without
any significant difference (0.1% level) to the lowest MSE mixing model within that group are written in bold.
The group of second-lowest MSE mixing models is written in italics.

mixing by K1, to least squares mixing with a single basis
function by LS, and to least squares mixing with the same
basis functions as the classifiers by LS-f.

The mixing models are evaluated by the mean squared er-
ror of the global prediction with respect to the target func-
tion over the same samples that were used to train the clas-
sifiers and mixing models. If noise was added, the error was
computed using noise-free samples. We have not performed
n-fold cross validation as we do actually want to minimise
the MSE for the given samples rather than for the function
that was sampled.

The experiments were implemented in Java and Jython,
using the matrix libraries of the Colt Project [3]. The source
code is available on the primary author’s webpage. For a
more detailed description of the experimental setup see [6].

5.2 Prediction Quality

We have evaluated all mixing models on all four target
functions with features ¢(z) = (1) and ¢(z) = (1,x)’, with
and without adding Gaussian noise. Noise was added at dif-
ferent strength, depending on the range of the target func-
tion. The mean squared errors are averaged over 20 exper-
iments with a randomly generated set of 50 classifiers and
on average 3 classifiers per input. The number of classifiers
is deliberately kept low to emphasise the effect of mixing on
the global predictions.

Table 1 summarises the results of these experiments and
highlights the group of mixing models with the lowest and
the second-lowest MSE’s for each target function. An ex-
ample prediction for the noise-free Blocks function is shown
in Figure 1. The full set of prediction plots can be found in
[6]. All significant differences reported are at the 0.1% level,
evaluated by the two sample t-test.

Let us first concentrate on linear mixing models. Given

averaging classifiers, both LS and LS-f produce the same re-
sults because they use the same basis functions P = 1 and
91(x) = 1 for their linear model. Except when tested with
the HeaviSine function, their MSE is significantly lower than
that of any other mixing model. If we use the classifier fea-
tures ¢(z) = (1,x)’, LS-f maintains that lead significantly
(again with exception of the HeaviSine function), but LS is
now only as good or worse than the heuristic mixing mod-
els. Using K1 to approximate the LS solution results in
significantly worse MSE’s than all other mixing models in
all cases.

With respect to heuristic mixing models, InvVar is al-
ways among the group of best or at least second-best models
if compared to all other mixing models. If only compared
to heuristic mixing models, it is always in the best group,
with the lowest MSE. Conf is generally worse than InvVar,
but the difference is very often not significant. MaxConf,
however, performs frequently significantly worse than both
InvVar and Conf. Mixing as performed by XCS is usually
significantly worse than both InvVar and Conf, with one ex-
ception where it only performs worse than InvVar, and not
significantly.

5.3 Linear Models vs. Heuristics

In our previous analysis we have used 50 classifiers. We
will now investigate how linear mixing models compare with
heuristic mixing models when the number of classifiers is
modified. We vary the number of classifiers from 20 to 420
in 100 steps. For each of these steps we compare the MSE’s
of InvVar, XCS, LS and LS-f, averaged over 20 experiments
with different classifier arrangements. The results for Conf
and MaxConf are not presented, as MaxConf frequently gave
significantly worse results than InvVar, and Conf was mostly
worse (but not significantly) than InvVar in all experiments.
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Figure 1: Example prediction for the Blocks function with 50 classifiers using the features ¢(z) = (1,z)’, with
an average of 3 classifiers per input, plotted over the range [0.2,0.5]. (a) shows the heuristic models, and (b)

shows the linear models.
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Figure 2: Change of the MSE for approximating
the Bumps function with a change in the number of
classifiers and the features ¢(z) = (1,z)’. The error
bars show the standard error over 20 experiments.

Representative for all test function the results for the
Bumps function are shown in Figure 2. The result for the
other test functions can be found in [6]. The common pat-
tern that we observed in all experiments is that the linear
mixing models perform better when the number of classi-
fiers are low. For a higher number of classifiers, InvVar is as
good as or better than LS and LS-f. XCS is always worse
than InvVar but the difference decreases with a higher num-
ber of classifiers. When using the more complex features
¢(z) = (1,z), the performance of LS in comparison to
InvVar is worse even for smaller numbers of classifiers, but
LS-f keeps up the lead of linear models to a higher number
of classifiers.

5.4 Discussion

Let us first consider the difference in performance of the
different heuristic mixing models. As we have already men-
tioned when introducing mixing models that rely on pre-
diction confidence, this confidence measure is based on the
assumption of having a normally distributed model error.
While Conf still averages over all matching local models,
MaxConf only picks the model with the highest prediction
confidence. Hence, if the assumption of a normally dis-
tributed noise is violated, we can expect MaxConf to per-
form worse than Conf. This is confirmed by almost all ex-
periments. In cases where MaxConf outperforms Conf their
difference in MSE is not significant. However, InvVar is
better than Conf and MaxConf in all cases, and it is compu-
tationally simpler. Therefore, it seems to be a better choice
than the heuristics based on prediction confidence.

We have already described when introducing XCS mixing,
that its classifier prediction quality metric also depends on
inputs that the classifier does not match. Therefore, we
did not expect it to perform as well as other heuristics that
do not rely on the prediction of other classifiers or inputs
outside of the set that it matches. This was confirmed in
our experiment where XCS performed significantly worse
than any other weighted averaging mixing model in all cases
except for one.

The linear mixing model we have introduced is not re-
stricted to weighted averaging mixing. Hence the values
returned by the mixing functions ¥, are not necessarily be-
tween 0 and 1, but can be larger than that or even negative.
We have also observed such behaviour in our experiments,
with mixing values up to 40. Hence, the prediction of a sin-
gle local model was in some cases multiplied many-fold to
produce the prediction of the global model. This makes us
question the meaning of the prediction of such local models,
that are supposed to represent the best fit of the matched
data to the form of the model.

The aggressive mixing with linear models is also apparent
when observing the shape of the predictions of the LS mixing
model, for example in Figure 1. The steps in the prediction



appear at classifier matching boundaries where from a set of
classifiers that match the input on one side of the step not
all classifiers match the input on the other side of that step.
This causes the global prediction on one side of the step
to be offset by the weighted prediction of the classifier that
does not match on the other side. Even though the overall
prediction appears to be worse than the one produced by
the heuristic mixing models, these spikes are narrow enough
not to influence the MSE significantly, as our experiments
have shown.

As the number of classifiers rises, so do the number of clas-
sifiers matching boundaries. Consequently, we can expect
to have more spikes influencing the MSE. This explains why
the performance of linear mixing models decreases with a
higher number of classifiers. While this is more pronounced
for LS, LS-f seems to cope better with a higher number of
classifiers. This can be explained by the higher number of
parameters that LS-f can adjust. Therefore, its model can
react better to local changes in the target function and to
classifier matching boundaries. Increasing the number of
basis functions of the linear model even further will conse-
quently also reduce the error even further. However, this
increase reduces the generality of the model until we have
one parameter per training sample and a prefect replication
of these samples, which is certainly not useful.

The inverse variance mixing model comes close to mixing
by least squares solutions of a linear model, and even exceeds
its performance for higher numbers of classifiers. Addition-
ally, it has a more appealing shape of the global prediction
due to its weighted averaging architecture. An additional
benefit is that it is easy to implement and that it scales lin-
early with the number of classifiers. The difference between
inverse variance mixing and XCS mixing is significant but
not substantial. Nonetheless, any improvement for small
computational cost is desirable, and the concept of inverse
variance mixing is more transparent and simpler to imple-
ment than XCS mixing. For all these reasons, it should be
the preferred choice for a mixing model.

6. SUMMARY AND CONCLUSIONS

We have investigated how to best mix predictions by a set
of local independently trained models that model the target
function over a subset of its domain. This issue has, to our
knowledge, never been investigated in any detail before.

We have formalised the task of mixing by specifying a
parametric mixing model that forms the global prediction
for a certain input by a weighted sum of the predictions of
the matching local models. The aim of the mixing model is
to minimise the MSE of the global predictions with respect
to the target function.

Due to the nature of the problem, the only form of mix-
ing model that admits an analytic solution to find the model
parameters is the linear model, which we have described in
more detail. However, computing its solution does not scale
well with the number of local models. Using gain adapta-
tion to approximate the solution is not an option because
it ignores the interrelation between the predictions of the
different local models.

To provide scalable solutions we have introduced a set of
heuristics that are all based on a weighted average of the
local predictions but differ in how they weight the different
models. We have shown that using such heuristics allows
us to bound the local and global prediction error by the

weighted sum of prediction errors of the local models. We
have introduced four heuristics: i) mixing by inverse vari-
ance of the local model, ii) mixing by prediction confidence,
iii) mixing by maximum confidence, and iv) mixing by fit-
ness, as currently performed in XCS.

We have shown in experiments that of the heuristic mixing
models, mixing by inverse variance gives the lowest predic-
tion error, and that the current XCS approach is not able to
compete with any of the other heuristics. Even though lin-
ear models are able to outperform any of the heuristics when
only few classifiers are used, their global prediction features
many spikes, and their relative advantage to heuristic mod-
els drops when the number of classifiers increases. As they
do not scale well either and cannot be applied to incremental
learning, we recommend using mixing by inverse variance.

Its performance was so far only demonstrated in function
approximation tasks. How well it will fare once it is applied
to classification is the subject of further research. Further-
more, we expect the change of mixing model to have a sig-
nificant impact on the performance of XCS in reinforcement
learning tasks, a hypothesis that certainly requires further
investigation.
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