Department of
Computer Science

UNIVERSITY OF

g0 BATH

Technical Report

XCS with Eligibility Traces

Jan Drugowitsch and Alwyn Barry

Technical Report 2005-01
ISSN 1740-9497

January 2005

Copyright (©January 2005 by the authors.

Contact Address:

Department of Computer Science
University of Bath

Bath, BA2 TAY

United Kingdom

URL: http://www.cs.bath.ac.uk

ISSN 1740-9497

XCS with Eligibility Traces

Jan Drugowitsch Alwyn M Barry
Department of Computer Science Department of Computer Science
University of Bath, UK University of Bath, UK

J.Drugowitsch@bath.ac.uk A .M.Barry@bath.ac.uk

January 2005

Abstract

The development of the XCS Learning Classifier System has produced a robust and stable im-
plementation that performs competitively in direct-reward environments. Although investigations
in delayed-reward (i.e. multi-step) environments have shown promise, XCS still struggles to effi-
ciently find optimal solutions in environments with long action—chains. This paper highlights the
strong relation of XCS to reinforcement learning and identifies some of the major differences. This
makes it possible to add Eligibility Traces to XCS, a method taken from reinforcement learning to
update the prediction of the whole action—chain on each step, which should cause prediction up-
date to be faster and more accurate. However, it is shown that the discrete nature of the condition
representation of a classifier and the operation of the genetic algorithm cause traces to propagate
back incorrect prediction values and in some cases results in a decrease of system performance. As
a result further investigation of the existing approach to generalisation is proposed.

1 Introduction

Learning Classifier Systems (LCS) are a class of machine learning techniques that utilise evolutionary
computation to provide the main knowledge induction algorithm. They are characterised by the repre-
sentation of knowledge in terms of a population of simplified production rules (classifiers) in which the
conditions are able to cover one or more inputs. The Michigan LCS [16] maintains a single population
of production rules with a Genetic Algorithm (GA) operating with the population ...each rule main-
tains its own fitness estimate. LCS are general machine learners, primarily limited by the constraints
in the representation adopted for the production rules (see, for example, [34]) and by the complexity
of the solutions that can be maintained under the action of the GA [12].

LCS have been successfully applied to many application areas — most notably for Data Mining
[22, 18, 6] but also more complex problems (e.g. [14, 26]). In particular the now commonly known
XCS! brought significant improvements in the robustness and generalisation abilities of such classifier
systems, as empirically demonstrated in direct reward environments in many cases (e.g. [32, 19, 34,
6, 13]). Solutions to delayed reward environments were found for simple environments (e.g. Woods2
[32, 33]), but XCS was shown to struggle to find the correct predictions in long chain environments, such
as Woods14 [20]. Recently, due to XCS’s similarity with reinforcement learning (RL) [21], performance
in such environments has been improved by translating new developments in reinforcement learning
to classifier systems. [7] has significantly improved XCS performance by adding direct and residual
gradient descent [1, 2] to the prediction update. This allows the classifier system to find optimal
predictions in Woods14 and other environments when using random start states and a low minimum
error to avoid the problem of over—general classifiers identified in [5, 3].

Still, prediction update in XCS is limited to one time step (known as single—step temporal difference
learning TD(0) in RL), resulting in slow reward distribution in large environments. To improve the
speed of prediction update, RL provides a method called TD(\) that keeps a decaying log of previous
states (Eligibility Traces) which will be updated at each prediction update. This not only provides
faster distribution of the reward to earlier states in the action—chain but also faster convergence to the
optimal values [30, 31, 28]. Given XCS’s similarity to Q-Learning? and the performance improvement
due to Eligibility Traces in Q(\), it is hypothesised that adding such traces to XCS will result in
comparable prediction update improvements.

1XCS is a classifier system that uses prediction accuracy as basis for classifier fitness calculation. The interested reader
is referred to 32, 33, 9].
2Q-Learning is off-policy TD(0) for optimal control [30].

1

Jan Drugowitsch and Alwyn Barry / XCS with Eligibility Traces

Updating predictions for several state—action values at once is not a novel idea in classifier systems.
[17] kept a record of all active classifiers during one episode and performed value update only at the
end of each episode®. In [23], the speed of reward propagation was improved by adding static “bridging
classifiers” that span over the whole action chain to update all classifiers in that chain at once. [11]
even proposed TBB(A), an improved bucket brigade algorithm [15] with truncated traces [10], but did
not present any results. However, no such improvement was attempted since the emergence of XCS.

This paper investigates how Eligibility Traces can be included in XCS to allow faster prediction
propagation in multi—step environments and enhance convergence properties in environments with long
action—chains. The following section describe the areas where Q-Learning [30] and XCS are similar or
differ and how XCS can be described as a Function Approximation (FA) technique for RL. This is
followed by a more detailed description of TD(A) and Q(A) [30, 31], how traces are implemented in XCS
and how this influences performance in a simple deterministic finite-state environment. The results
are then discussed and their consequences generalised.

2 XCS and Q-Learning

2.1 Prediction and Policy

The classifier predictions of XCS are updated using the technique of Q-learning [30]. This technique is
based on off-policy Temporal Difference (TD) control to directly approximate the optimal action—value
function Q*, using the update procedure*

Q(st—1,at—1) — Q(St—1,ai-1) + <7" + maX)Q(st,a) - Q(St—laat—1)> (1)

a€A(s¢

for each action a performed in state s at time ¢t — 1. 3 is the learning rate (0 < 8 < 1), 7 is the discount
factor (0 <+ < 1) and r is the reward received for performing action a;—; in state s;_;.

The action—value function Q(s,a) represents the expected return for each state—action pair. The
discount factor ~ effects how much future rewards are valued at the current state. Additionally, dis-
counting of the reward acts as motivation for action selection towards rewarding states (assuming that
non-rewarding actions within the environment are not penalised) as the agent’s action selection is based
on maximising the expected return when exploiting the learned knowledge. The policy 7 describing
this action selection is called the greedy policy mgreedy, Where from each state s the selected action is
a; = argmax, ¢ A(St)Q(st, a). e—greedy is another commonly used policy in reinforcement learning that
allows early focus on optimal control but also provides some degree of exploration. It conforms to a
greedy policy with a probability of 1 — e and performs random action selection from A(s;) otherwise.

In XCS, in contrast, the action—value for one state—action pair is given by the accumulated, fitness—
weighted prediction of the classifiers in the action set. Policy—wise, XCS commonly performs one
exploration episode with purely random action selection, followed by one exploitation episode with
greedy action selection. In both cases actions are performed until either a terminal state is visited
or the maximum number of steps per episode is exceeded. Performance is usually only reported for
exploitation episodes, which makes it hard to compare XCS and Q-Learning performance reports.

The sequence of policy evaluation and prediction—value update in Q-Learning is to firstly selects
its action depending on the current policy. Then it performs another greedy policy evaluation while
updating the @Q—function, as can be seen in the update function (1). In comparison, XCS calculates the
prediction array (PA), which is the fitness—weighted accumulation of predictions for each action in M.
The next action is selected by applying the current policy to PA. Thereafter, the prediction values of the
A~! are updated using the maximum value of PA, which is equivalent to performing a mgycedy evaluation
on the current M. This shows that in each subsequent step the policy evaluation is based on prediction
values before they have been updated with the expected return of the previous step. Therefore, when
compared with Q-Learning, XCS always lags one step behind with its prediction update. As, however,
the generalised policy iteration (GPI) [28] does not put restrictions on the sequence of policy evaluation
and policy improvement, XCS without generalisation can still be said to converge to optimal values
with ¢ — oco. Still, in a strict sense XCS does not perform Q-Learning.

3This update procedure is comparable to Monte Carlo Markov Chain methods, where predictions are updated when
a terminal state is reached.

4Notation: Using the notation of [9], with the following differences: A is the action set, M is the match set, P is the
full population of classifiers, S is the set of all states in the state space, A(s) is the set of possible actions for state s. The
environment is modelled by a Markov Decision Process (MDP), defined by a finite set of states s € S, actions a € A(s),
a transition function T'(T : S x A — II(S)) to assign each state—action pair the probability distribution II(S), and a
reward function R(R: S x A — R).

Jan Drugowitsch and Alwyn Barry / XCS with Eligibility Traces

2.2 Value Function Approximation and Generalisation

Tabular Q-Learning needs to store one prediction value per state-action pair, or) __¢ [A(s)| prediction
values overall. This can result in excessive storage usage for large environments. Therefore, attempts
are made to reduce the number of parameters of the learner and still retain acceptable performance. In
reinforcement learning, this is done by the use of known function approximation techniques, like linear
approximation, gradient descent, or different tiling methods to approximate the action—value function
[28].

XCS can be seen as some form of function approximator that segments the action—value function
into overlapping regions. Fach of these regions is defined by the condition of one classifier, which
covers a region of a size that depends on the level of generality of the classifier’s condition. Perhaps the
closest resemblance to such a function approximator in RL is soft state aggregation. Ordinary state
aggregation is a simple form of generalising function approximator where states are grouped together
with one table entry used for each group [28]. In soft state aggregation, the states are mapped into
M > 0 aggregates or clusters from cluster space X, where each state s belongs to cluster x with
probability P(z|s) [24]. This allows each state to be covered by several clusters. The value of a cluster
generalises to all states in proportion to the clustering probabilities.

Agglomeration of classifier predictions in XCS can be seen as soft state aggregation with one
cluster being represented by one classifier. The state—action value for state s and action a is given by
the fitness—weighted prediction of all classifiers matching this state, or more formally

chos,a pleCl
chos,a fCl

where the ¢ operators indicates that for any classifier ¢l € P its condition matches the current state
s and the action it promotes matches the current action a®, i.e. ¢l ¢ s, a resembles the action set A
matching state s for the chosen action a. In soft state agglomeration the action—value is given by
the classifier prediction weighted by its probability to cover the state—action pair s,a, or formally

Q(s,a) =" cp P(cl]s,a)pe. That gives

Q(s,a) = (2)

fel

P(clls,a) = { W ifclos,a

3)

otherwise

for the probability of a classifier belonging to a particular state-action pair. Using the above proba-
bilities, one state of the classifiers of XCS can be mapped onto reinforcement learning with soft state
aggregation.

2.3 Eligibility Traces

Eligibility Traces are a way of improving the speed of prediction update in reinforcement learning
by performing action—value backups over more than one state. As shown in expression (1) standard
Q-Learning, like any other TD(0) method, performs single backup, i.e. it bases the update magnitude
on one next expected return. Monte Carlo methods, in contrast, perform value update only after the
whole sequence of rewards are observed, which is at the end of one episode. Eligibility traces allow a
mixture of TD(0) and Monte Carlo by basing prediction updates on n steps of real reward and the
estimated value of the nth next state, all appropriately discounted [28].

In TD()), several backups of different lengths are mixed to form a complex backup, i.e. if the return
of an n—step backup is given as R,En) =11 e 2+ Y e 9"V (84), then TD(N)
mixes these backups by weighting the n—step backup by A"~ !, or more formally

RY=(1-X) AR (4)

n=1

Although it might not seem feasible to apply this approach, its implementation is rather trivial, as
shown below.

From a different viewpoint, TD(A) can be seen as a decaying log of visited state—action pairs.
These can be implemented by adding an additional memory e(s, a) to each state—action pair that gets
refreshed every time this pair is visited and decays with every other step taken. Originally, traces were
accumulating, i.e. every time the corresponding state—action pair was visited they were increased by

5For a more formal definition of matching of classifiers see [21]

3

Jan Drugowitsch and Alwyn Barry / XCS with Eligibility Traces

1. Later, it was found that limiting the trace—magnitude to 1 (called replacing traces) gives better
performance, in particular if some actions do not perform a state transition [25], or more formally

()

ei(s,a) =

1 if s=s10=ay
Aver—1(s,a) otherwise

for each s, a at each step. Different to reinforcement learning, XCS commonly deals with environments
where A(s) is not known and so A = |J,.q A(s) has to be assumed for each state. For this reason,
replacing traces is a better choice for such environments.

To use eligibility traces in Q—Learning, (1) is changed to

Q(s,a) — Q(s,a) + Pee(s,a)Vs € S,a € A(s) (6)
with ¢ = rgq+ 7 ax Q(s5141,0a) — Q(s¢, ar) (7)

where € is the current error of expected return. At every step all traces decay by e(s,a) «— Avye(s,a),
as given in (5). Due to Q-Learning’s off-policy nature, special care is required to only keep the traces
as long as the learner follows a greedy policy. As soon as a non-optimal action (based on the state of
current knowledge) is selected, all traces have to be set back to zero to avoid misleading value updates.
This update procedure conforms to Watkins’ Q(\), as described in [30].

In XCS the current action—value is formed by the classifiers in the current action set A. Therefore,
each classifier eventually causes a different prediction error. Eligibility Traces require one error value
€ to be propagated back to all classifiers with traces. The approach chosen here is to weight the error
produced by each ¢l € A by the macroclassifier’s fitness®, or

Y cieA(P = per) fe
chGA fCl

This causes each classifier to contribute the same fraction to the overall error as it contributed to the
prediction.

It is hypothesised that adding Eligibility Traces to XCS will increase the speed of convergence
towards the correct predictions, similar to the benefits seen in Q(A). What might interfere with this
hypothetical speed increase is generalisation within the classifier’s condition, which causes the classifier
to cover several states that might be visited during one episode. Another influential factor is the mean
error calculation, because it may be misleading to weight each classifier’s error by its fitness which in
the case of a new classifier will always be low.

(8)

€ =

3 Implementation

The effectiveness of eligibility traces is tested by adapting Barry’s XCS v2.3, creating a new XCS(\).
His implementation is similar to the one described in [9] with the following differences:

e The covering operator only introduces a new classifier if M = (). A new classifier is introduced
at the end of each exploration step if) ;.\ panume < (pr, where ¢ is the covering multiplier
constant and usually set to 0.5. The new classifier matches the current message with “#”s
introduced with probability Py and promotes a random action not present in M.

e The only form of subsumption used is between the parents and its children in the GA.

Traces are added by introducing an additional parameter e to each macroclassifier. Initially 0, at
each occurrence of a classifier in A its trace is updated to e, = 1. At the end of each step, the traces of
all classifiers in the population decay by ey < Ayey. After each episode and whenever a non—greedy
action is performed, all traces are reset back to zero.

The prediction update for A~! is performed in the usual way. However, directly after updating
A~ the prediction of each classifier ¢l ¢ A~! is updated by pe; < pe + (€eqr, where € is given by (8).
On encountering a terminal state, prediction update in A is performed in the same way as in A~!.

One point of inconsistency of this implementation is the incompatibility of the prediction update
within A and the update through traces outside of A. For classifiers in A the MAM update method
[29] is applied, where unexperienced classifiers calculate the average of the previous and the current

6As noted in [19], the fitness already accounts for the numerosity, the count of equal classifiers within a population,
in a macroclassifier.

Jan Drugowitsch and Alwyn Barry / XCS with Eligibility Traces

0 s)L 55)0 s)L 55)0 55)L s6 0] o7

1 0 1 0 1 0 1
0,1 0,1 0,1 0,1 0,1 0,1 0,1

S8 S9 S10 S11 S12 S13 S14

Figure 1: A 7-Step Finite State World. The learner always starts at state so. Each episode terminates
when terminal state sy is reached. The states are encoded in binary by their state numbers using 4
bits.

1 S T T

. N, Steps with Traces
Steps without Traces
Rel. Error with Traces
. Rel. Error without Traces

T

Steps with Traces

Steps without Traces

Rel. Error with Traces

%o Rel. Error without Traces
Fge

08 | R g 08 R RS 4

R

#
otxx
o txx

. KoK e Ko e KRy e I S — e -
B T T VIV o

06 1 0.6 q

Proportion
Proportion

04 4

Ve Y T

R S LT Y SN SPNP . o . .
50 100 150 200 250 30 20 50 60
Exploitation Episodes Exploitation Episodes

(a) (b)

Figure 2: The number of steps per episode and the relative error w.r.t. the current prediction for XCS
with and without traces. In (a) XCS starts with an empty population and uses covering, induction and
deletion to find the optimal classifiers. (b) shows prediction learning in XCS when it starts with the
optimal population and provides neither induction nor deletion. The episode steps are given by their
moving average over 50 exploit episodes. All curves are averaged over 10 runs.

values and experienced classifiers use the delta—rule for its prediction update. This requires the number
of updates to be stored within each macroclassifier. Update through traces facilitates the delta—rule
independent of the classifier experience and causes an update error when mixed with the MAM method.
This error, however, is negligible and does not influence the general finding of the experiments.

4 XCS(\) Performance

4.1 Experiments

To keep analysis simple, XCS(\) is tested in a small, deterministic finite state world which is shown
in Fig. 1, eliminating a number of confounding variables that exist in Woods-like environments [4].
The learner has to find the shortest sequence of actions from state sg to the terminal state s;, where a
reward of 1.0 is given. All states are encoded in 4-bit binary, allowing for generalisation of state n and
n+ 10002 without introducing any error. The optimal population O therefore consists of 21 classifiers.
Optimal generalisation covers a fraction of Pyzo = 0.083 of all condition alleles of O. The minimum
number of steps is 7.

The XCS parameters are set to the following values: N = 336, 8 = 0.2, a = 0.1, ¢¢ = 0.01, v = 5.0,
v =071, 0ga =25, x = 0.8, p = 0.04, Oge; = 20, 6 = 0.1, Oy, = 20, Px = 0.2, py = 0.01,
er = 0.01, fr =0.01, ¢ = 0.5. Explore and exploit episodes follow each other alternately, performance
is only reported in exploit mode. For XCS()\) the additional trace decay constant is set to A = 0.9. It
is assumed that O is not known in advance and so Py is kept high when compared to Py although
this might influence the results negatively.

To honour prediction errors independent of their position in their environment, the relative error
w.r.t. the current prediction or payoff” or the relative error w.r.t. the optimal prediction are reported.

"This method was first proposed in [4]

Jan Drugowitsch and Alwyn Barry / XCS with Eligibility Traces

Relative Error

R

Figure 3: (a) shows the relative error w.r.t. the optimal prediction for each state—action pair for the
first 4000 steps, using standard XCS. The state—action pairs are shown in the sequence s¢/0, so/1,
s8/0, sg/1, s2/0, s2/1, $9/0, s9/1, ..., $14/0, s14/1. (b) shows the same results for XCS(A).

06 T T T T T

T T
Prediction -1 ---x---
Prediction t --
Optimal Prediction-====""}

05 - Change of Rel. Effor =&/

0.4
0.3
0.2

0.1

Prediction and Relative Error

0

01 | 1

02 4

.03 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9

Classifier in Step Sequence

Figure 4: The prediction per state—action pair before and after the prediction update. The change of
relative error shows how the relative prediction error w.r.t. the optimal prediction changes with the
prediction update. The sequence of state—action pairs is given in the text.

Figure 2 shows a comparison of steps per episode and relative error w.r.t. the current prediction
for XCS and XCS(A). It can be clearly seen in (a) that although traces cause a faster decrease of error
and episode steps in the early stages, they perform worse by the time that standard XCS converges
to the optimal policy. However, when starting XCS with the optimal population and deactivating any
covering or induction (see (b)), traces show the expected effect of improved prediction update.

A comparative plot of the relative error w.r.t. the optimal prediction for each state—action pair is
shown in Fig. 3. One feature that is already visible in Fig. 2 but can also be seen in this plot, is that
standard XCS in (a) reduces the relative error faster that XCS()\) in (b). Another interesting effect is
that for XCS(A) the relative error moves below zero very rapidly, particularly for the early states in
the sequence. This indicates that the combination of classifiers for these state—action pairs predict a
value that is higher than the optimal value — for the first few states even double the optimal value.

4.2 Analysis

Although it seems intuitive that adding traces to XCS should increase the speed of learning as they do
in RL, they seem to have the opposite effect. A comparison of the graphs in Fig. 2 suggests that the
reduction of performance is caused by the covering and induction operator. A more detailed analysis
of one prediction update in an early episode allows insight into why traces as implemented above do
not improve performance.

To examine this further, let us consider an example transition, in this case in the form of a prediction
update in episode 7 (explore) after the learner has performed the following sequence of steps: so/1 —

6

Jan Drugowitsch and Alwyn Barry / XCS with Eligibility Traces

T
Without Traces ~ +
With Traces ~ x

09 F // 4

Epsiode Steps after 50 Exploration Episodes

Ratio of P#/ P#O

Figure 5: Change of the average steps per episode after 50 exploitation episodes by changing of the
parameter Py. Py is displayed as the ratio of Py to Pxo. The steps per episodes are averaged over
10 runs.

s8/0 — 51/0 — $9/0 — $3/1 — s10/1 — s3/1 — s4. The chosen action is 1, which lets the learner
proceed to state s12. Figure 4 shows the prediction for each state—action pair in the performed sequence
before and after the prediction update caused by the transition to state s15. The state—action pairs s4/1
and s12/1 are exclusively covered by an over—general classifier #1#+/1, which causes their prediction
to be equal. As visualised in Fig. 4, the prediction for s4/1 is higher than the optimal prediction, which
was caused by an earlier update in s15/1 with a higher value. This causes s4/1 to produce a negative
error at the current update which is reasonable for s4/1 due to its too high prediction. However,
propagating this error back through all previously visited states causes their prediction also to be
lowered. This back—propagation causes a drop in performance for 6 out of 7 states and subsequently
reduces overall prediction quality.

Clearly, traces fail as soon as over—general classifiers cause negative prediction errors to occur.
Updating the prediction in a state closer to the terminal state can cause the prediction of a state—
action pair with a lower optimal value to overshoot this optimal value. Hence, negative errors emerge
from classifiers that cover state—action pairs with different optimal values. When traces are applied,
such negative errors are then propagated back to all classifiers in the action sequence and reduce their
prediction. If their prediction was lower than or equal to the optimal prediction — which is the case
for all less than optimally or optimally general classifiers — their prediction is degraded. This effect is
strongest when the over—general classifier covers several states close to the terminal state where the
difference in magnitude of the optimal value is highest between the states.

Experimental validation for this explanation is given in Fig. 3b where the predictions for early
states in the chain show a negative error of high magnitude in early runs. These result from either
over—general classifiers that cover these early states and other states closer to the terminal state or
from traces that propagate negative errors back through the action chain. The former also explains
the minor negative error in Fig. 3a for standard XCS but the significant reduction of performance in
XCS(A) can only be accounted for by the latter.

If negative error back—propagation is found to cause such a loss of performance, one could argue to
avoid negative errors by taking the prediction P instead of the mean error € to perform update in all
classifiers with traces. This would bypass the problem of how to define the mean error and subsequently
avoids the back—propagation of negative errors. This, however, is a fallacy as the value of earlier states
is always based on later states in the action—chain, which can, due to over—generals, still cause a too
high prediction and subsequent reduction of performance. The only viable solution would be exclusive
use of traces when a terminal state is reached (and the external reward is guaranteed to be correct) but
experiments revealed only a minor speed increase that does not compare with speed decrease caused
by the maintenance of the traces themselves.

Another workaround for the loss in performance is a reduction of generality as controlled by Py
to avoid the high amount of over—general classifiers. Indeed, a reduction of Py can improve the per-
formance of XCS(\) significantly as visualised in Fig. 5. This graph shows that Py < Puo causes
XCS(A) to evolve a correct policy faster than standard XCS. However, at Py > 3P40 the increased
introduction of over—general classifiers reduces the performance of XCS()\) visibly below that of the
standard system. With these findings one might want to suggest that keeping Px low would solve

7

Jan Drugowitsch and Alwyn Barry / XCS with Eligibility Traces

the problem. Yet, a too low Py introduces too many over-specific classifiers that cause early random
deletion due to population pressure, as identified in [8]. The result is an infinite “covering — random
deletion” cycle with sub—optimal performance.

5 Discussion and Conclusion

It has been shown that XCS(A) does perform worse than standard XCS if over—general classifiers
reduce performance due to negative error back—propagation. Setting coverage and mutation generality
Py close to or lower than the generality of O avoids this effect but can cause XCS to be trapped in
an infinite “covering — random deletion” cycle. As in a real-word setting Pyo is not known, so no
recommendations can be given for the setting of Py. Due to such sensitivity to system parameters and
the increased effort of implementation, additional storage requirements and increased runtime, adding
Eligibility Traces to XCS does not justify the effort.

Recently it has been shown [7] that adjusting the prediction update to reflect on gradient descent
can significantly improve the speed and accuracy of learning the correct prediction values. This im-
provement is achieved by weighting the prediction update in addition to the learning rate § by the

classifier’s fitness w.r.t. the fitness of A, or = Foy o Therefore, high—fitness classifiers will converge
cle AT <

to the correct prediction quicker, while low—fitness classifiers will keep their errors high. It is ques-
tionable if this extension would improve the performance of XCS()), as it will not be able to avoid
over—general classifiers. In addition, fitness—weighting prediction updates for classifiers with traces
require to additionally store), , Fq for the last A the classifier appeared in, which introduces
additional bookkeeping.

Over—general classifiers cannot be avoided in the trial-and—error approach that characterises the
reinforcement learning framework. If the optimal values of all state-action pairs are larger than the
initial prediction of a classifier, then any prediction update to a lower classifier prediction is a strong
indicator for an over—general classifier. Such information could be used in further XCS development
to quickly identify such overly general classifiers and remove them from the population. The problem
with such an approach is that before the too—high prediction was identified, it has already been used to
update the prediction of the previous classifier in the action—chain. As a result, the previous classifier’s
prediction could also overshoot its optimal value and would incorrectly be removed at its next update.
Another way is to initially keep more general classifiers in a “nursery” that allows prediction update
but no contribution to the final prediction value. Only if a nursery’s classifier did not cause a negative
error after a certain amount of updates will it act as a part of the population. This again would allow
the addition of traces, as over—general classifiers are much less likely to disrupt the prediction update.
Still, the impact of such a nursery on overall XCS performance is unclear and remains topic of further
investigation.

In the light of the results of XCS(A) it seems surprising that RL with FA is still able to improve
performance when using traces (e.g. [27]). The most obvious difference in how XCS and RL perform
their searches is how they traverse the error surface. Function approximation methods in RL either
operate on fixed generalisation (e.g. by tiling) or adjust generalisation while also updating the value
function. Only in the latter case could generalisation be an issue when using traces. Still, generalisation
is usually performed smoothly, by descending in the direction of the negative gradient of the error
surface. Adaptive State Aggregation (ASA, [24]), for example, applies soft state aggregation and adjusts
the cluster probability distribution softly over all states by minimising the Bellman error. The GA in
XCS with ternary condition coding, in contrast, treats state coverage as a switch rather than a degree.
Therefore, when mapping state coverage of XCS to soft state aggregation (as demonstrated in section
2.2), its probability distribution per classifier changes with a much higher degree of discontinuity when
compared to ASA. Eligibility Traces propagate errors back to states that have been visited before.
Rapid changes cause higher errors and their propagation results in bigger disruption of the system.

By interpreting XCS as a reinforcement learner with function approximation, the genetic algorithm
performs the function of searching possible ways of covering the action—value function. Currently this
is done by flipping bits and introducing a “don’t care” symbol to allow some form of generalisation.
It might be possible to find other approaches to perform this search, possibly by further investigating
recent developments in RL, with softer adaptation of how the search space is traversed and still reach
a global optimum. Naturally, that would require another way of expressing generalisation and as such
deviation from the binary representation. If soft adaptation can be achieved, further investigation of
performance improvement with eligibility traces should be conducted.

8

Jan Drugowitsch and Alwyn Barry / XCS with Eligibility Traces

References

1]

L. C. Baird. Residual algorithms: Reinforcement learning with function approximation. In Machine
Learning: Proceeding of the Twelfth International Conference. Morgan Kaufmann Publishers, July
1995.

L. C. Baird. Reinforcement Learning Through Gradient Descent. PhD thesis, School of Computer
Science. Carnigie Mellon University, Pittsburgh, PA 15213, 1999.

A. Barry. Limits in Long Path Learning with XCS. In E. Cantu-Paz, J. A. Foster, K. Deb,
D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman,
J. Wegener, D. Dasgupta, M. A. Potter, A. C. Schultz, K. Dowsland, N. Jonoska, and J. Miller,
editors, Genetic and Evolutionary Computation — GECCO-2003, volume 2724 of LNCS, pages
1832-1843. Springer-Verlag, 2003.

A. M. Barry. XCS Performance and Population Structure within Multiple-Step Environments.
PhD thesis, Queens University Belfast, September 2000.

A. M. Barry. The Stability of Long Action Chains in XCS. Journal of Soft Computing, 6(3—
4):183-199, 2002.

E. Bernadé, X. Llora, and J. M. Garrell. XCS and GALE: a Comparative Study of Two Learning
Classifier Systems with Six Other Learning Algorithms on Classification Tasks. In Proceedings of
the 4th International Workshop on Learning Classifier Systems (IWLCS-2001), pages 337-341,
2001.

M. V. Butz, D. E. Goldberg, and P. L. Lanzi. Gradient Descent Methods in Learning Classifier
Systems: Improving XCS Performance in Multistep Problems. Technical Report 2003028, Illinois
Genetic Algorithms Laboratory, December 2004.

M. V. Butz, T. Kovacs, P. L. Lanzi, and S. W. Wilson. How XCS Evolves Accurate Classifiers.
In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo,
S. Pezeshk, M. H. Garzon, and E. Burke, editors, GECCO-2001: Proceedings of the Genetic and
FEvolutionary Computation Conference, pages 927-934. Morgan Kaufmann, 2001.

M. V. Butz and S. W. Wilson. An Algorithmic Description of XCS. Technical Report 2000017,
Illinois Genetic Algorithms Laboratory, 2000.

P. Cichosz and J. J. Mulawka. Fast and Efficient Reinforcement Learning with Truncated Temporal
Differences. In International Conference on Machine Learning, 1995.

P. Cichosz and J. J. Mulawka. Faster Temporal Credit Assignment in Learning Classifier Systems.
In Proceedings of the First Polish Conference on Evolutionary Algorithms, 1996.

M. Compiani, D. Montanari, R. Serra, and P. Simonini. Learning and Bucket Brigade Dynamics
in Classifier Systems. Special issue of Physica D (Vol. 42), 42:202-212, 1990.

L. Davis, C. Fu, and S. W. Wilson. An Incremental Multiplexer Problem and Its Uses in Classifier
System Research. In P. L. Lanzi, W. Stolzmann, and S. W. Wilson, editors, Advances in Learning
Classifier Systems, volume 2321 of LNAI, pages 23-31. Springer-Verlag, Berlin, 2002.

M. Dorigo and M. Colombetti. Robot Shaping: An Experiment in Behavior Engineering. MIT
Press/Bradford Books, 1998.

J. H. Holland. Properties of the Bucket Brigade. In J. J. Grefenstette, editor, Proceedings of the
1st International Conference on Genetic Algorithms and their Applications (ICGA85), pages 1-7.
Lawrence Erlbaum Associates: Pittsburgh, PA, July 1985.

J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R. Thagard. Induction: Processes of Inference,
Learning, and Discovery. MIT Press, Cambridge, 1986.

J. H. Holland and J. S. Reitman. Cognitive systems based on adaptive algorithms. In D. A.
Waterman and F. Hayes-Roth, editors, Pattern-directed Inference Systems. New York: Academic
Press, 1978.

[18]

[19]

[20]

[23]

[24]

[34]

Jan Drugowitsch and Alwyn Barry / XCS with Eligibility Traces

J. H. Holmes. A genetics-based machine learning approach to knowledge discovery in clinical data.
Journal of the American Medical Informatics Association Supplement, 1996.

T. Kovacs. Evolving Optimal Populations with XCS Classifier Systems. Master’s thesis, School
of Computer Science, University of Birmingham, Birmingham, U.K., 1996.

P. L. Lanzi. A Study of the Generalization Capabilities of XCS. In T. Béck, editor, Proceedings
of the Tth International Conference on Genetic Algorithms (ICGA97), pages 418-425. Morgan
Kaufmann, 1997.

P. L. Lanzi. Learning Classifier Systems from a Reinforcement Learning Perspective . Technical
Report 00-03, Dipartimento di Elettronica e Informazione, Politecnico di Milano, 2000.

A. Parodi and P. Bonelli. The Animat and the Physician. In J. A. Meyer and S. W. Wilson, editors,
From Animals to Animats 1. Proceedings of the First International Conference on Simulation of
Adaptive Behavior (SAB90), pages 50-57. A Bradford Book. MIT Press, 1990.

R. L. Riolo. Bucket Brigade Performance: I. Long Sequences of Classifiers. In J. J. Grefenstette,
editor, Proceedings of the 2nd International Conference on Genetic Algorithms (ICGA87), pages
184-195, Cambridge, MA, July 1987. Lawrence Erlbaum Associates.

S. P. Singh, T. Jaakkola, and M. I. Jordan. Reinforcement Learning with Soft State Aggregation.
In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Information Processing
Systems, volume 7, pages 361-368. The MIT Press, 1995.

S. P. Singh and R. S. Sutton. Reinforcement Learning with Replacing Eligibility Traces. Machine
Learning, 22(1-3):123-158, 1996.

R. E. Smith, B. A. Dike, R. K. Mehra, B. Ravichandran, and A. El-Fallah. Classifier Systems in
Combat: Two-sided Learning of Maneuvers for Advanced Fighter Aircraft. Computer Methods in
Applied Mechanics and Engineering, 186(2—4):421-437, 2000.

R. Sutton. Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse
Coding. Advances in Neural Information Processing Systems, 8:1038-1044, 1996.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 1998. A Bradford Book.

G. Venturini. Apprentissage Adaptatif et Apprentissage Supervisé par Algorithme Génétique. PhD
thesis, Université de Paris-Sud, 1994.

C. J. Watkins. Learning from delayed rewards. PhD thesis, University of Cambridge, Psychology
Department, 1989.

C. J. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279-292, 1992.

S. W. Wilson. Classifier Fitness Based on Accuracy. Ewvolutionary Computation, 3(2):149-175,
1995.

S. W. Wilson. Generalization in the XCS Classifier System. In J. R. Koza, W. Banzhaf, K. Chel-
lapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo,
editors, Genetic Programming 1998: Proceedings of the Third Annual Conference, pages 665—674.
Morgan Kaufmann, 1998.

S. W. Wilson. Mining Oblique Data with XCS. Technical Report 2000028, University of Illinois
at Urbana-Champaign, 2000.

10

