
Integrating Life-Like Action Selection into Cycle-Based
Agent Simulation Environments

Joanna J. Bryson, Tristan J. Caulfield and Jan Drugowitsch
University of Bath

Department of Computer Science
Artificial models of natural Intelligence (AmonI)

http://www.bath.ac.uk/comp-sci/ai/AmonI.html

July 30, 2006

Abstract

Standardised simulation platforms such as RePast, Swarm, MASON and NetLogo are mak-
ing Agent-Based Modelling accessible to ever-widening audiences. Some proportion of these
modellers have good reason to want their agents to express relatively complex behaviour, or they
may wish to describe their agents’ actions in terms of real time. Agents of increasing complex-
ity may often be better (more simply) described using hierarchical constructs which express the
priorities and goals of their actions, and the contexts in which sets of actions may be applicable
(Bryson, 2003a). Describing an agent’s behaviour clearly and succinctly in this way might seem
at odds with the iterative, cycle-based nature of most simulation platforms. Because each agent
is known to act in lock-step synchrony with the others, describing the individual’s behaviour in
terms of fluid, coherent long-term plans may seem difficult.

In this paper we describe how an action-selection system designed for more conventionally-
humanoid AI such as robotics and virtual reality can be incorporated into a cycle-based ABM
simulation platform. We integrate a Python-language version of the action selection for Bryson’s
Behavior Oriented Design (BOD) into a fairly standard cycle-based simulation platform, MA-
SON (Luke et al., 2003). The resulting system is currently being used as a research platform in
our group, and has been used for laboratories in the European Agent Systems Summer School.

1 Introduction

Standardised simulation platforms such as RePast, Swarm, MASON and NetLogo are making
Agent-Based Modelling accessible to ever widening audiences. Some proportion of these mod-
ellers have good reason to want to express the actions of their agents in terms of real time. For
example, they may want to describe continuous, durative actions such as walking or fighting
wars. Such actions can either have pre-specified durations or they can continue occurring until
some event consummates or interrupts them. Modellers may also need to increase the complexity
of their agents to include relatively complex variable state, such as memories of past interactions
with other agents, or conflicting theories of relationships between third parties.

1

Bryson (2003a) describes how agents of increasing complexity may often be better (that is,
more simply) described using hierarchical constructions which express the priorities and goals of
their actions, and the contexts in which sets of actions may be applicable. Describing an agent’s
behaviour clearly and succinctly in this way can seem at odds though with the iterative, cycle-
based nature of most simulation platforms, which seem to specify that each agent proposes its
own action in lock-step synchrony.

In the present paper we describe a Python-based version of the action selection for Bryson’s
Behavior Oriented Design (BOD). BOD splits an agent’s control into two sorts of entities: modular
behavior libraries which are written in conventional object-oriented languages such as Python, and
Parallel-rooted, Ordered, Slip-stack Hierarchical (POSH) action selection scripts. Behavior modules
enable action by:

1. containing the code describing how an action is performed,

2. providing a place to store any state / memory needed to conduct those actions, and

3. containing code describing any sensing that must be conducted in order to acquire that state
/ knowledge.

Action selection scripts (also called plans) then order these actions, and also the sensing events
necessary to support decision making in a way that reflects the individual agent’s priorities. In
other words, action selection determines when an action should be expressed.

The Python version of the core action-selection system, jyPOSH, is currently being used for
two different research projects. One is as a real-time system controlling a virtual-reality game
agent in Unreal Tournament (Partington and Bryson, 2005; Bı́da et al., 2006), and the other is for
agent-based social simulations. We are currently using MASON (Luke et al., 2003) for the social
simulations, but our solution should be easily extendible to other platforms. We have used an
early demo of the BOD/MASON system involving dogs herding sheep to teach BOD at the Euro-
pean Agent Systems Summer School in July 2005, where students were encouraged to extend the
behaviour of the dogs and sheep, including turning the dogs into wolves that ate the sheep. We are
now also building research projects on primate social behaviour on this BOD/MASON platform,
although earlier versions of this work were run in NetLogo and SmallTalk (Bryson et al., 2006).

In this paper, we begin by describing the MASON platform and why we are using it. We then
give a brief overview of BOD and its POSH action-selection framework. The main purpose of
this paper is to outline the relatively simple steps necessary in the abstract for integrating POSH
action selection into a cycle-based simulation tool, and the relatively more complicated process of
actually integrating a Python planning system and behavior modules into MASON.

2 Background: Component Technologies

2.1 MASON and Other Platforms

MASON (Luke et al., 2003) is multi-agent simulation environment written in Java. It is designed to
provide a generic platform with core functionality upon which many different types of simulation
can be built. The philosophy behind MASON is to provide a fast, portable, and non-domain-
specific framework that contains features commonly required by different types of multi-agent
models. Other simulation environments, such as NetLogo and RePast, are more domain-specific

2

but may also provide a great deal more support for writing simulations in their respective do-
mains. NetLogo, for instance, is designed for simulating social interactions and this is supported
by the existence of fairly high-level, competent agents (called turtles) natively within NetLogo
and a large number of functions (moving, turning, finding other turtles, etc.) to manipulate these
agents. NetLogo provides its own high-level language which features the turtle’s actions and ways
to manipulate the turtles as special primitives. It is a relatively simple and constrained language
intended to help inexperienced programmers build simulations quickly.

In contrast, MASON does not restrict itself to a particular type of agent but provides the flex-
ibility to completely customise its agents. As a result, the primitives provided by MASON are
on a lower level. If developers want to manipulate the agent’s behaviour at a higher level of ab-
straction, they are required to program custom high-level primitives themselves. The group that
developed MASON has a particular interest in evolutionary simulations, and as such were willing
to sacrifice greater development time in exchange for rapid execution time. All entities must be
implemented in MASON’s native Java language.

Over the last four years, we have had approximately twelve student dissertations (undergrad-
uate and one-year taught masters) on social simulation conducted in our group. Each of these
projects has contained a phase where students evaluate a number of platforms and then choose
the one on which they build their project. By far the most popular platform has been NetLogo
(Wilensky, 1999). This is primarily because of the ease of developing both agents and UIs for as-
sisting in running experiments (and, more recently, behavior-space parameter sweeps.) MASON
is the second most popular tool. When it wins over NetLogo, it does so because it runs faster and
is more programmable, e.g. it allows linking to Java libraries 1. We also have had two students
select RePast and one student select SeSAm2.

MASON is divided into separate layers (see Figure 1). The inner layers — the core — can
function without the outer layers, which provides visualisations and domain-specific functions.
At the core are two essential layers, the model and utilities layers. The model layer contains
classes that represent two- and three-dimensional fields in both bounded and toroidal forms, both
discrete and continuous, along with methods to place, locate, and determine the distance between
objects in the field. A scheduler is also supplied, allowing events to be run at various frequencies
of iterations and even in a particular order during one iteration. The other core layer implements
classes that are useful when writing simulations, such as optimised collections and a random
number generator.

Besides the core layers, MASON includes a visualisation layer. This layer is designed in the ba-
sic MASON architecture as optional — simulations can be run with or without it, and performance
increases when it is turned off. The layer allows for 2D and 3D visualisations using a sophisticated
class model, making the display of model data highly customisable. This method also isolates the
simulation in a separate thread from the GUI and displays, increasing performance, and enabling
the visualisations to be turned on or off as the simulation runs. Information on the state of objects
in the model can also be observed and altered at runtime through the use of the inspector classes
in this layer.

Beyond these layers, MASON does not provide anything. It is intended as a generic simulation
environment and leaves the implementation of domain-specific layers and of the actual models up
to others. Our contribution is that we have extended the MASON environment by integrating it
with a POSH engine in a compatible language. This allows modellers to use the BOD development

1Although NetLogo now also has a Java API, we have not yet tried to exploit this.
2The SeSAm student did not complete her dissertation, but this was probably not a consequence of the platform.

3

� � � � �
� � � �

� � � � 	
 � � � �

� � � � 	
 � � � � �

� � � 	 � � � � �
� � �

� �

� � �
� �� � � ! � "

#

� � $
% &

' � () � � � � �
*
 +
 ' � ,
 + � � � � �

- � � . � � � � � � � � 	 � � � � � �

 � /

* � � , � � ' � ,
 + � � � � �

Figure 1: The basic BOD/MASON architecture. We have added extra layers of functionality on
top of MASON’s default layers (in keeping with MASON’s design principles) which provide the
user a simpler programming interface, including access to specialist action-selection code.

methodology in MASON, and as a by-product supports their describing their agents in Python
rather than Java. This is an advantage because Python is a far quicker and easier language to code
in.

2.2 BOD and POSH Action Selection

Behavior Oriented Design (BOD) is a methodology for constructing relatively complex, animal-
like agents (Bryson, 2001, 2003b). The purpose of the methodology is to help ordinary program-
mers produce agents that generate behaviour to meet multiple, possibly conflicting goals that
operate continuously and in parallel. Most programmers — and indeed, most ordinary people
who simply make plans — are used to thinking in terms of sequences of actions. The challenge
of making an autonomous agent is that many goals are held at the same time and must be met
concurrently e.g. one agent can simultaneously be entertaining the desire to get a promotion, the
desire to have dinner and the desire to wear a clean shirt in the morning. Further, these goals
must be achieved in the face of an unpredictable, dynamic environment, which may provide both
unexpected opportunities and challenges. Steps that might ordinarily be considered necessary
for achieving a goal may not be required in some contexts, but may have to be repeated or even
abandoned for other strategies in others.

BOD splits the problem of agent intelligence into two parts. One part is the construction of
a behavior library. The behavior library consists of relatively ordinary code for describing indi-
vidual actions, including active, goal-directed sensing and evaluation of the environment. The
behaviour library is typically modular, based on the established development methodologies of
object-oriented design (Parnas et al., 1985; Coad et al., 1997) and Behavior-Based AI (Brooks, 1991;
Matarić, 1997). The other part of a BOD agent is a hierarchical structure known as a POSH plan

4

which organises primitive actions, including sensing3. The POSH plan determines an individual
agent’s capabilities and priorities. Many very different agents can share the same library of be-
havior modules provided each has its own POSH action selection. A single behaviour library is
typically developed for any one research platform, but multiple types of agents can be designed
which reuse aspects of this code yet have different priorities or ‘personalities’ specified in their
POSH plans.

The primitives of POSH plans are acts and senses. These are the interface to the behaviour li-
brary — each primitive is typically a method call to one of the objects used to represent a behaviour
module. Senses report on conditions in the simulation to inform decision points in the plan, while
acts actually change some aspect of the simulation (possibly just the agent).

Picking appropriate primitives is a challenge. Deciding the correct granularity at which action
selection should occur is half of the problem of action selection for AI. BOD does this through a set
of heuristics which are run iteratively over the development period. Essentially, if a POSH plan
is becoming too complicated, then current granularity may be too small and new, more abstract
primitives should be built. On the other hand, if there is redundancy in the behaviour library
code, then probably a primitive needs to be decomposed into smaller elements to facilitate reuse.
If there is redundancy in a plan, then additional memory should be introduced into the agent
in the form of state in a behaviour module, which the plans can the refer to, making them more
general. Details of the BOD methodology can be found elsewhere (Bryson, 2001, 2003b).

Besides the plan primitives, POSH also provides three aggregate types which provide the
plans’ order and hierarchy. These are action patterns, which are simple sequences; competences
which are prioritised sets of productions (pairs of sensory preconditions and their action conse-
quences); and a drive collection — a special competence which serves as the root of the action-
selection hierarchy and specifies the main drives or motivations for the agent. Details of POSH
can also be found elsewhere (Bryson and Stein, 2001; Bryson, 2001, 2003a).

Action selection is where the programmer or planner’s established ability to sequence actions
and prioritise goals can be expressed. The underlying sequential structure can be encoded in the
plan hierarchy, then the action selection mechanisms is able to manipulate the actual order of
action expression in response to motivational and environmental context. These acts and context-
checking senses are then the plan primitives which must be supported by the behaviour library.

The version of POSH we use with MASON is a derivative of pyPOSH. PyPOSH was originally
implemented by Kwong (2003). It is a Python version derived from the (Bryson, 2001) lisp version
of POSH action selection. As documented by Kwong (2003), we chose to implement a version of
POSH in Python because Python is (like lisp) a high-level loosely-typed language which allows
rapid code development. However, Python is also a scripting language with relatively familiar
syntax and structure, making it more accessible for programmers familiar with languages such as
Java, C or perl. Python is also strongly object-oriented, which makes it amenable to both contem-
porary software engineering in general and to Behavior Oriented Design in particular. Previous to
this project, the main pyPOSH behavior library was for Unreal Tournament (Kwong, 2003; Part-
ington and Bryson, 2005).

3POSH is an adjective which stands for “Parallel-rooted, Ordered, Slip-stack, Hierarchical”

5

Figure 2: A screenshot of BOD/MASON running the sheep/dog demo. The MASON simulation
window shows the agents, while the MASON control panel (upper right) is shows the console tab
— this panel controls the simulation. The smaller windows are inspectors. The simulation can be
started from the command line, or from the jyPOSH GUI (overlapping the simulation window on
the lower left.)

3 Example: Of Sheep and Dogs

Before detailing the technical issues involved in bringing POSH to MASON, we will start by de-
scribing a complete BOD/MASON simulation. Let us consider a simple example: we want to
simulate a bunch of sheep that are herded by one or more dogs. This gives us two types of agents
to model, the sheep and the dog, both situated in the same environment.

Even though we think of the behaviour of sheep and dogs as very different, when we consider
the problem of describing intelligence from first principles (e.g. physics), we realize that all agents
in a particular environment will share a large amount of basic behaviour. For example, consider
navigation. Currently we restrict ourselves to using the continuous toroidal environment MASON
provides since this simplifies navigation. MASON is itself in Java, and does not provide many
primitives, and so we have implemented some Java primitives on top of MASON that simplify
the control of agents in these environments (e.g. the actions move and setDirection and the
senses location , orientation and distanceTo). These primitives are implemented in Java
to provide sufficient speed in the simulation. An additional layer in Python links the MASON
agents to POSH action selection, and provides all the primitives implemented in the Java layer,

6

like, for example, information about the agent’s location. Once implemented, all these primitives
can be used and re-used by all agents that reside in that environment.

The sheep’s behaviour is determined by the combination of its POSH plan and its behaviour
library. The plan tells them to graze (i.e. do nothing) as long as they are calm and close enough to
fellow sheep. If a sheep is not close enough to other sheep (where enough is determined in a be-
haviour and is dependent on just how calm they are feeling) it will move towards the others. When
moving to other sheep agents, their motion is determined by simple flocking behaviour, balanc-
ing cohesion and aversion between sheep, and some momentum and random motion (Reynolds,
1987). If the sheep sense a nearby dog, their plan says that this is a higher priority concern than
grazing. When a dog approaches, the sheep’s panic level rises and influences the weight of the
different motion components, causing the sheep to increase their speed and flock more densely.
Grazing, moving towards other sheep, and flocking motion are implemented as a POSH behaviour
library, written in Python. The act/sense primitives provide a thin layer on top of the MASON
primitives. The different behaviours are then integrated by the POSH plan.

The dogs’ behaviour is designed in the same manner, by linking a set of POSH primitives
provided by the dog behaviour library by a POSH plan. The plan tells a dog to rest as long as the
herd width does not exceed a certain threshold, and otherwise to approach the closest sheep to
make them move closer together. The dogs can share the same resting behaviour as the sheep, but
their approaching behaviour is different, since they pick just one sheep to hassle first. The agents’
plans determine which behaviour from the library is expressed by those particular agents.

Having implemented the sheep and dog behaviour, all that is left for the user to do is to specify
the environment and where the sheep and dogs are located. A simulation master file, also written
in Python, takes this role by defining a set of agent classes by their POSH plan, behaviour libraries,
and their appearance in the GUI. It also specifies the size of the environment, and how many sheep
and dogs are initially randomly located in the environment.

The sheep/dog demo has been implemented for teaching purposes, to show the power of the
BOD approach. Students are encouraged to think about how to change the behaviour of the agents.
For example, how would you change the sheep into deer, which are smart enough to scatter if a
predator attacks rather than to clump? How would you change a dog into a wolf which catches
a sheep rather than just frightening them? Could you make a smarter dog that herds the sheep
more quickly? Can you make a team of dogs?

To summarise, the only parts that have to be written by the users are:

POSH Behaviour Libraries containing a set of actions and senses that are usable by POSH plans.
These actions and senses provide agent-specific higher-level functionality than what is pro-
vided by the simulation environment. The behaviour library for sheep, for example, pro-
vides amongst others the actions set panic to max, move to target , flock move, and
senses alone , predator close . The behaviour libraries are written in Python.

POSH Plans linking the actions and senses of the behaviour libraries to form the behaviour of
the agent. The syntax of these plans is POSH-specific; the complete grammar can be found
on the POSH web page or in the pyPOSH documentation. There is also an integrated de-
velopment environment (IDE) for developing these plans, called the Advanced Behaviour
Oriented Design Environment (ABODE).

Main Simulation Script to set up the simulation, specify the environment size, and initialise the
agents of the environment. In our Sheep/Dog example, this script defines the sheep and dog

7

Figure 3: A screenshot of ABODE editing a sheep’s POSH plan (see text.)

agents by linking their behaviours with their plans, specifies their appearance in the simula-
tion, and sets the number of sheep and dogs in the simulation, and their initial location. The
simulation script is written in Python.

The simulation is displayed and controlled by MASON, which can in turn be started from the
main pyPOSH GUI. MASON uses pyPOSH and the user-provided behaviours and plans to let the
sheep flock and the dog hunt them. The details of how exactly POSH is controlled from within
a simulation environment like MASON — all hidden away from the user — is given in the next
section.

4 Under the Hood

Our aim was to keep the tasks of the user developers simple while still maintaining the flexibility
of POSH action selection, and the power of the MASON simulation toolkit. All the user needs
to do is to write or extend Python behaviour modules, POSH scripts and a master simulation
file. How we have provide such simplicity, and how MASON actually interfaces with pyPOSH is
described below.

4.1 Language Issues

The POSH system was already written in the Python language. Rather than making it compatible
with MASON by re-writing it in Java we decided to use Jython to integrate the two. Jython is an
implementation of Python written in Java, which compiles the Python code to Java bytecode which
is then run on the Java virtual machine. Jython has the extra advantage over ordinary Python that

8

Java classes can be used from within Python code, and vice-versa (with a few caveats). Jython also
supports multiple-inheritance, and more importantly for us, multiple-inheritance from Python
and Java classes simultaneously.

Jython implements an earlier version of the Python language than the one that POSH was
written in, meaning that the code initially would not run under Jython. To fix this it was necessary
to go through the POSH code and change any parts that used features only found in the newer
version of the language. For instance, in more recent versions of Python, there are “true” and
“false” keywords in the language, whereas in earlier versions these were represented by “1” and
“0” respectively. Another problem that was at first more difficult to solve was the fact that the
way Python did variable scoping changed between versions. This presented a problem, particu-
larly with nested functions, where inner functions could not access the members of the enclosing
class. Luckily, the new scoping was accessible in the version of Python that Jython implements,
so instead of rewriting all of the existing POSH code we only needed to add an import statement
(“from future import nested scopes”) at the top of each Python file to enable the new scoping.

4.2 The Layer on Top of MASON

Jython allows the direct use of Java classes from Python scripts. Hence, MASON can be directly
used from Python scripts, but then the user still has to cope with the complexity of the MASON
framework. To avoid that, we have written a thin layer around MASON that removes some of
its complexity and tailors the API specifically for a certain sets of environments to be used in
combination with POSH actions selection4.

For now we have committed ourselves to continuous toroidal environments of arbitrary size.
Consequently, we provide a simulation class that only provides such environments, and a simula-
tion GUI class that visualises them. In the master simulation scripts, the only tasks required to be
done by the user are now:

• Override the simulation class to specify the size of the environment and initialise the agents
at the start of the simulation. That means, the user has to specify the agent type, its initial
state, and where it is located in the environment.

• Override the simulation GUI class to set the name of the simulation, and the colour of the
environment.

All the rest of the set up for the MASON simulation and GUI is performed in the thin layer between
the user and MASON.

4.3 Entities and Agents

As MASON provides only very limited agent functionality, we have constructed an additional
layer for entities and agents that is similar to that which can be found in NetLogo. MASON pro-
vides the concept of fields of the environment that can be seen as a set of different layers, each of
which covers the whole environment. Objects in the environment are located in one or several of
those fields, and all the functions we have provided for these objects can be restricted to certain

4Early users of BOD/MASON complained a great deal that they needed to look in both Java and Python behaviors.
That was never really our intention but more of a teething problem. In the current version of BOD/MASON we seem to
have been successful at completely encapsulating the Java away from the user.

9

fields. Going back to the previous sheep/dog example, all the sheep are located on the “sheep”
field, and all dogs are on the “dog” field. If a sheep wants to find the closest other sheep, then it
just needs to look for the closest object in the “sheep” field. Hence, using different fields allows
grouping of agents and entities. This is will speed up certain functions, particularly those expo-
nential on the number of agents, such as comparisons. However, it adds a level of complexity for
the MASON developer, since the fields need to kept track of.

The simplest objects we provide are entities, which have a location and a certain appearance in
the environment, but no orientation. They can represent any stationary object in the simulation,
for example, a tree or pond. In addition to its properties, we provide a set of sense primitives
for these entities, like its distance to other objects, or the approximate “centre” of all objects in a
certain field. These senses apply either to all fields, or just to a given subset.

Another class oriented entity inherits the basic entities and provides an additional “orientation”
property, and some methods that allow it to move in the environment. Even though it does not
yet provide autonomous control, this class provides all that is required from the MASON side to
interface it with POSH action selection, as described in the next section.

4.4 Synchronous Asynchrony

BOD agents are asynchronous by design. New actions are performed in response to events in the
environment or changes of internal motivation of the agent, not at regularly scheduled intervals.
On the other hand, most simulation environments are stepped, and all agents have to choose their
actions at each step. How can we combine those two modes of operation?

In fact, this problem is more simple to solve than it appears. Although BOD agents may have
multiple threads or even devices supporting the behaviour generated by the behaviour modules,
the actual POSH action selection is sequential and cycle-based. The responsiveness is a conse-
quence of the rapid cycle rate of POSH, which typically can operate at hundreds of cycles per
second, providing that no primitive action it calls has blocked it for any length of time. In fact,
to sustain the illusion of asynchrony, one of the requisite properties for BOD behaviour libraries
is that the method calls to behaviours should not block while they wait for a protracted action to
happen. Where protracted actions occur (e.g. motion in a robot) methods should only serve to
initialise or reparameterise an action which is then sustained by the behavior module itself.

When a BOD agent appears to be engaged in a sustained activity what actually happens with
respect to action selection is the following. At each cycle, POSH checks if the conjunction of its
sensed internal or external states is unchanged, which causes it to perform the same ‘act’ as in
the last cycle. The expressed behaviour is continuous because the POSH cycles are performed at
a high frequency, and the action primitives are carefully designed so they show no disruption in
expresses behaviour when they recur.

This architecture was originally designed to allow an agent with hierarchical action selection
to still be a fully responsive and reactive real-time autonomous agent — in fact, POSH was origi-
nally designed for and implemented on autonomous robots. Fortunately, this structure also allows
POSH to be easily integrated into stepped simulation environments. Rather than having the POSH
agent continuously call the internal cycle, the control is now given to the simulation environment.
Its role is to signal the POSH agent at each simulation step to perform one internal cycle, which
causes the agent to perform actions according to its POSH plan. The agent’s environment becomes
the simulation environment, and its behaviour libraries use the simulation environment primitives
to sense and act within this environment. Because some cycles in POSH are dedicated to details of

10

the decision making, a new expressed action may not be chosen on every cycle of the simulator.
But this is not really a problem if we are trying to simulate realistic real-time agents. In fact, fak-
ing asynchrony in cyclic environments has been shown to be important in simulating animal-like
behaviour (Hemelrijk, 2000).

What does that mean for the specific case of using MASON as a simulation environment?
Firstly, we need to modify the MASON agent class we have described in the last section to use
POSH to perform its action selection. A new class, AgentBase, which inherits from both the POSH
agent and our MASON agent, is the foundation for all agents that perform POSH action selection
in a MASON simulation (e.g. the sheep and the dog in our previous example). This class overrides
the standard POSH cycle control, and instantiates a separate MASON control class. At each step
of the simulation a method of this control class is called by the MASON stepped scheduler, and
that method subsequently calls the POSH core cycle. Hence, at each step of the simulation causes
one POSH cycle to be performed. Having several agents in the same simulation, the MASON
scheduler calls the POSH cycle of each agent one after the other.

The final question is what implementation of POSH the agent will use. There are currently
two versions of POSH action selection encoded in jyPOSH — a scheduled version, ScheduledAgent,
which maintains a little more decision state and therefore is more cognitively plausible, and a strict
slip-stack, StrictAgent, which runs faster. Bryson (2001, section 4.6) details the differences between
these POSH implementations.

The only thing that is left to the user is to specify for each agent class the set of behaviour
libraries to use, and which plan to run. The agent class has to inherit out combine POSH/MASON
agent class, and the behaviour/plan information is given by overriding its constructor.

4.5 Intra-Module and Intra-Agent Communication

The behavior library for BOD agents is usually modular. Modular decomposition driven by the
sorts of memory an agent needs, just like in standard object-oriented design (Coad et al., 1997).
BOD however does not require the modules to be fully encapsulated. Just as for the action selec-
tion, one behavior module may poll another for information the second module is specialist in.
Similarly, sometimes agents will need to communicate to each other in the simulation. Even if in
the real world that communication would have been tactile or visual (for example if one agent
hugs another or glares at another), in a simulation this information has to be transmitted between
agents. Since in a BOD system all sensing is done in behavior modules, in a BOD agent such
information needs to be transmitted between two agents’ behavior modules.

BOD/MASON framework provides a unified solution for both of these problems. All Behaviour
instances for a single agent are stored in a behaviour dictionary (the Python version of a hash ta-
ble), which is maintained by the POSH Agent object. The Agent object also provides the method
getBehaviour which allows any process having access to the agent object to get the state of
any of the agent’s behaviour module objects. Additionally, each behaviour object keeps a refer-
ence to the agent object that owns that behaviour. Thus different behaviours can exchange state
information by calling self.agent.getBehaviour(‘‘ behaviour name’’) , and can get in-
formation about the internal states of other agents (like the closest other object on the “agents”
field) by self.agent.closest(’agents’).getBehaviour(‘‘ behaviour name’’) .

11

4.6 Agent Visualisation

The idea of separating the visualisation from the simulation core in MASON is also applied on the
visualisation of agents. While the agent only exists in the simulation, it is linked to a portrayal
object that is responsible for its visual appearance in the MASON GUI. Directly translating that to
POSH/MASON, the user would have to perform several additional (non-trivial) steps to define
the appearance of an agent.

We have simplified this procedure by removing the separation between the agent object and
its visualisation. The user now has to call a class method in the overridden constructor of the
POSH/MASON agent to set the appearance of the agent. This method creates the agent’s portrayal
object and links it to the simulation visualisation as soon as it is created. This is another measure
for the user to simplify the use of MASON.

4.7 Inspecting Agent States

In complex simulations with many agents it is hard to keep the overview over the variables which
specify the memory and identity of the agents. Fortunately, MASON provides some tools that
allow the display of changes in the agent’s internal states while the simulation is running. Its
implementation is based on using Java reflection on the methods of the agent to identify accessor
and mutator methods, and display them in the GUI’s inspector window.

In BOD, the state of an agent is determined by the state of the the behaviour modules it uses
from the behaviour library. These behaviours are implemented in Python. Unfortunately, Jython
creates Java proxy objects for Python objects, so its methods are not accessible through Java reflec-
tion. Hence, the standard inspectors do not work for POSH/MASON agents.

To regain access to the MASON inspectors for BOD/MASON agents, we have added an ad-
ditional method to the Behaviour class (the base class for all behaviours) which lets the user
register Python accessor and mutator methods to be used by MASON inspectors. These methods
are collected in the agent’s inspection objects. Whenever the user requests inspection of a certain
agent, some Python code in the BOD/MASON agent’s base class adds the inspection GUI compo-
nents and queries the state accessor methods to display the current state of the agent’s behaviours.
The user can then modify that state through text fields in the GUI, and these modifications are
communicated to the agent’s behaviours via the provided mutator methods.

Again, all the implementation detail has been hidden from the users. The only thing they have
to do is to provide and register accessor/mutator methods for all the behaviour she defines.

5 Summary

This paper has presented the BOD/MASON agent based modelling tool suite. We have described
both in general how complex agent action selection can be incorporated into a stepped ABM sim-
ulator, and in particular the problems we encountered and the solutions we have implemented in
building POSH capabilities into MASON. We have also briefly outlined the Behavior Oriented De-
sign methodology and provided an overview of MASON, including a brief comparison between
it and other simulation platforms.

Since BOD/MASON is one of the development platforms for our research into the evolution
of social behaviour, we expect it will continue to grow and improve. We have now created a

12

mailing list and a bug-tracking system as well as having alpha released an IDE for POSH plans.
We encourage our colleagues to consider using this system.

6 Acknowledgements

BOD/MASON was originally built by Tristan Caulfield and has been under continuing develop-
ment and refinement by Jan Drugowitsch. Development time for both researchers was funded
from a grant from The UK Engineering and Physical Sciences Research Council (EPSRC), Grant
GR/S79299/01 (AIBACS). ABODE is being funded as contract work by an anonymous industrial
benefactor. Thanks also to Ivana Čače and the students of the 2005 European Agent-based Sys-
tems Summer School (EASSS) who provided useful feedback. The greatest thanks goes to our
primary user, Hagen Lehmann, for suffering through all stages of BOD/MASON development —
an interesting way to learn to program for the first time.

References

Bı́da, M., Burket, O., Brom, C., and Gemrot, J. (2006). Pogamut — platform for prototyping bots
in unreal tournament (pogamut — platforma pro prototypovánı́ botøu v unreal tournamentu). In
Kelemen, J. and Kvasnicka, V., editors, Proceedings of Sixth Czech-Slovak workshop on Cognition
and Artificial Life, pages 67–74. Slezská Univerzita v Opave. in Czech.

Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47:139–159.

Bryson, J. J. (2001). Intelligence by Design: Principles of Modularity and Coordination for Engineering
Complex Adaptive Agents. PhD thesis, MIT, Department of EECS, Cambridge, MA. AI Technical
Report 2001-003.

Bryson, J. J. (2003a). Action selection and individuation in agent based modelling. In Sallach, D. L.
and Macal, C., editors, Proceedings of Agent 2003: Challenges in Social Simulation, pages 317–330,
Argonne, IL. Argonne National Laboratory.

Bryson, J. J. (2003b). The behavior-oriented design of modular agent intelligence. In Kowalszyk,
R., Müller, J. P., Tianfield, H., and Unland, R., editors, Agent Technologies, Infrastructures, Tools,
and Applications for e-Services, pages 61–76. Springer.

Bryson, J. J. and Stein, L. A. (2001). Architectures and idioms: Making progress in agent design. In
Castelfranchi, C. and Lespérance, Y., editors, The Seventh International Workshop on Agent Theories,
Architectures, and Languages (ATAL2000). Springer.

Bryson, J. J., Yasushi, A., and Lehmann, H. (2006). Agent-based models as scientific methodology:
A case study analysing primate social behaviour. Philosophical Transactions of the Royal Society, B.
in press.

Coad, P., North, D., and Mayfield, M. (1997). Object Models: Strategies, Patterns and Applications.
Prentice Hall, 2nd edition.

Hemelrijk, C. K. (2000). Towards the integration of social dominance and spatial structure. Animal
Behaviour, 59(5):1035–1048.

13

Kwong, A. (2003). A framework for reactive intelligence through agile component-based behav-
iors. Master’s thesis, University of Bath. Department of Computer Science.

Luke, S., Balan, G. C., Panait, L., Cioffi-Revilla, C., and Paus, S. (2003). MASON: A Java multi-agent
simulation library. In Sallach, D. L. and Macal, C., editors, Proceedings of Agent 2003: Challenges
in Social Simulation, pages 49–64, Argonne, IL. Argonne National Laboratory.

Matarić, M. J. (1997). Behavior-based control: Examples from navigation, learning, and group
behavior. Journal of Experimental and Theoretical Artificial Intelligence, 9(2/3):323–336.

Parnas, D. L., Clements, P. C., and Weiss, D. M. (1985). The modular structure of complex systems.
IEEE Transactions on Software Engineering, SE-11(3):259–266.

Partington, S. J. and Bryson, J. J. (2005). The behavior oriented design of an unreal tournament
character. In Panayiotopoulos, T., Gratch, J., Aylett, R., Ballin, D., Olivier, P., and Rist, T., editors,
The Fifth International Working Conference on Intelligent Virtual Agents, pages 466–477, Kos, Greece.
Springer.

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer
Graphics, 21(4):25–34.

Wilensky, U. (1999). NetLogo. Evanston, IL, USA.

14

