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Perceptual decision-making?



Normative solutions?

Can be parameterised to fit the behaviour

Deviations from normative solutions give insight into specific deficits or biases

Norma&ve	  =	  how	  things	  ought	  to	  be	  

the information on which decisions should be based

the computations that need to be carried out on that information
Identify



Resources

Notes, derivations, and figure code (MATLAB) is on

https://github.com/jdrugo/FENS2015
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Normative evidence accumulation

51.2% coherence

12.8% coherence

Random dot motion task

“right”?“left”?

z ∈ −1,1{ }Hidden state

“left” “right”
p(x | z) =N x | z,σε

2( )Evidence

observation / stimulus

Posterior belief
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01evacc/single_obs.m



Evidence accumulation with multiple observations

z ∈ −1,1{ }Hidden state

“left” “right”
p(xn | z) =N xn | z,σε

2( )nth evidence

observation / stimulus

Posterior belief after N observations

p(z | x1:N )∝ p(z) p(xn | z)
n=1

N

∏ ∝
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i.i.d. likelihoodprior

XN = xn
n=1
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Evidence accumulation with stream of evidence

Discretise stream into small chunks of δt

Likelihood of momentary evidence δxn

p δxn | z( ) =N δxn | zδt,σε
2δt( )

information in δxn about z goes to 0 with δt     0 

dx
n / 

dt
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01evacc/continuous_obs.m

Posterior upon observing δx1, δx2, … for t seconds
(taking δt     0)

X(t) = δx(s)
0

t

∫with sufficient statistics

p z |δx0:t( )∝ p(z) p δxn | z( )
n=1

t
δt

∏ ∝
1

1+ e
−2X (t )z

σε
2

i.i.d. likelihoodprior

X(t) ~ N zt,σε
2t( )diffusion model



Road map

Normative evidence accumulation

What do we want to maximise?

Speed/accuracy trade-off for known reliability of evidence

Speed/accuracy trade-off for unknown reliability of evidence

Extensions



Maximizing 0-1 reward

To get from posterior to choices: need loss/reward function
reward(choice a, hidden state z)

Perform choice that maximises expected reward

0-1 reward

choice
a=“right”

a=“left”
z=-1 z=1
1
0 1

0

hidden state

p z =1| X(t)( ) ≥ 1
2

p z =1| X(t)( ) < 1
2

choose “right”

choose “left”

choose more likely correct option
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how long to accumulate?

02lossfn/loss_01.m

forever?



A cost for accumulating evidence

Cost c for accumulating evidence 
internal (e.g., effort / attention)
external (e.g., lost future opportunities)
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After some time,
marginal choice accuracy increase does
not justify associated cost

ER(PC,RT ) = PC − cRT

Expected reward

p(correct) reaction time

This is the reward function
that we will use for the rest of the tutorial



Maximising reward rate rather than expected reward

Loss of future reward is explicit in reward rate

RR(PC,RT ) = PC − cRT
RT + ti + (1−PC)tp

inter-trial interval penalty time
(for wrong choices)
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Even c=0 leads to early choices,
as large RT reduces reward rate in denominator

We will come back to that as possible extension
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Dynamic Programming in a nutshell

We find the optimal speed/accuracy trade-off by Dynamic Programming

Ingredients (Markov Decision Process):
Set of states,
Set of actions,
State transition probabilities,
Reward function,
(Discount factor,        )

s ∈ S
a ∈ A

p !s | s,a( )
r(s,a)
γ =1

s1

s2s3

s5s4

s6

r(s1,1)=-1

a=1

a=2

a=1
a=1

a=1

a=1 r(s2,{1,2})=-1
r(s3,1)=-1

r(s4,1)=-1
r(s5,1)=10

a=1
r(s6,1)=0

Aim: find policy                 that maximises total rewardπ : S→ A

V π (s) = r sn,π (sn )( )
n=1

∞

∑
p s1,s2 ,…|s1=s,π( )

from each state s.

Can be found recursively by solving Bellman’s equation:

V s( ) =max
a

r s,a( )+ V ( !s )
p !s |s,a( )

"
#

$
%

Optimal action (i.e., optimal policy) is action that maximises right-hand side.

V(s6)=0

V(s5)=10
V(s4)=9

V(s3)=8
V(s2)=9

V(s1)=8



States and actions in perceptual decision-making

States: all observations so far     sufficient statistics X ∈ −∞,∞[ ]
To have bounded state-space, use belief                instead:g∈ 0,1[ ]

g(X) ≡ p z =1| X( ) = 1

1+ e
−2 X
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01evacc/single_obs.m

X ∈ −∞,∞[ ]

g∈ 0,1[ ]

Actions: r s,a( )+ V ( !s )
p( !s |s,a)

choose “right” (z=1) g+ 0
1− g+ 0
−cδt + V ( "g )

p(g '|g)

choose “left” (z=-1)
accumulate another δt

Bellman’s equation for perceptual decision-making:

V (g) =max g,1− g, V ( "g )
p(g '|g)

− cδt#
$
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03knownreliab/plot_valueintersect.m

optimal decision-making by boundaries on belief g



An example decision

time t
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03knownreliab/plot_diffusion_example.m



Finding the optimal bounds numerically

Find belief transition probability p(g’|g) for accumulating δt more evidence

Discretise belief and value function into k=1,…K, and solve numerically by value iteration:

V k,n =max gk,1− gk, p g j | gk( )V j,n−1 − cδt
j=1

K

∑
#

$
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(
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03knownreliab/plot_belieftrans.m

decreasing δt 

belief g’ after another δt
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Optimal boundary with cost, task difficulty

evidence accumulation cost c
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An alternative to DP to find the optimal boundaries:

ER(PC,RT ) = PC − cRT

PC = 1

1+ e
−2 θ
σε
2

RT =θ tanh θ
σε
2

Maximising using known expression for diffusion models



Optimal decision-making with diffusion models

Boundaries on belief g      boundaries in X (diffusion model)
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X ∈ −∞,∞[ ]

g∈ 0,1[ ]
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Can perform optimal decision-making without ever computing belief g
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Evidence accumulation with reliability changing across trials
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defines trial difficulty for fixed σε=1

Hidden state, z ∈ −1,1{ }
Trial difficulty,                  (small = hard)α ∈ 0,∞[ ]

Per-trial evidence mean µ =αz

p(µ) =N µ | 0,σα
2( )

drawn for each trial from

overall task difficulty (small = hard)
Hard trials more likely, easy trials less likely

With evidence,                         evidence accumulation by δxn ~ N µδt,δt( )

g(X, t) ≡ p z =1|δx0:t( ) = p µ ≥ 0 | X(t), t( ) =Φ X(t)
σα

−2 + t

%

&
'
'

(

)
*
*

such that sufficient statistics are now both X(t) and t

p µ |δx0:t( )∝ p(µ) p δxn |µ( )
n=1

t
δt

∏ ∝N µ | X(t)
σα

−2 + t
, 1
σα

−2 + t
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The resulting optimal policy

V (g, t) =max g,1− g, V "g , t +δt( ) p "g |g,t( )
− cδt#

$%
&
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Bellman’s equation over belief g and time t
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04knownreliab/plot_valuefn.m

future expected value takes into account time-dependence

For each fixed t      boundaries in belief g      time-dependent boundaries



Optimal decision-making with diffusion models

Using time-dependent mapping between belief g and diffusing particle X

g(X, t) =Φ X
σα

−2 + t

#
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(
( X(g, t) = σα

−2 + tΦ−1 g( )

Can map bound in belief g to bound in diffusing particle X
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04knownreliab/plot_diffusion_example.m

As before, optimal decision-making without ever directly computing the belief
Naturally leads to slower error than correct choices



Urgency signal

“urgency signal” as
collapsing bound?
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Maximising reward rate instead of expected reward

Maximising reward rate = maximising reward in infinite sequence of structurally equal trials

Problem: value of initial choice will be infinite (infinite, possibly rewarding choices follow)

Solution: use average-adjusted value, discounting time δt by -ρδt

reward rate (reward per unit time)

this value is relative to reward that can be achieved on average

For example, Bellman’s equation for known evidence reliability

Policy is invariant to shifts in value function, such that we can choose              .V 1
2( ) = 0

Find both value function and reward rate, using consistency criterion,              .V 1
2( ) = 0

V (g) =max
g− ti + (1− g)tp( )ρ +V 1

2( ),1− g− ti + gtp( )ρ +V 1
2( ),

V "g( ) p "g |g( )
− ρ + c( )δt

#
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%
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(
(
(

expected time from decision to onset of next trial



Generalisations to evidence model

A time-varying accumulation cost

Accumulation cost might rise/drop over time

V (g, t) =max g,1− g, V "g , t +δt( ) p "g |g,t( )
− c(t)δt#

$%
&
'(

supported by human/animal behavior (Drugowitsch et al., 2012)

Evidence reliability that varies within individual trials

In real-world decisions, the evidence reliability is practically never constant.

Requires simultaneous estimation of hidden state and momentary evidence reliability
sufficient statistics are at least two-dimensional

Leads to reliability-dependent bound on decision-maker’s belief,
see Drugowitsch, Moreno-Bote, Pouget (NIPS, 2014).

Paper also introduces faster way to find expected future reward, using PDE solvers.



Summary

Notes, derivations, and figure code (MATLAB) is on

https://github.com/jdrugo/FENS2015
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