The Bayesian Brain: the timing of perceptual decisions

Jan Drugowitsch jan_drugowitsch@hms.harvard.edu

> Department of Neurobiology Harvard Medical School

CoSMo 2017

Road map

Perceptual decision-making

speed/accuracy trade-off

experiments investigating perceptual decisions

characteristics of behavior

Decision-making models accumulator / diffusion models fit to behavior & issues

Normative analysis

simple scenario: task difficulty known more complex: varying task difficulty time-varying decision boundaries: behavioral evidence

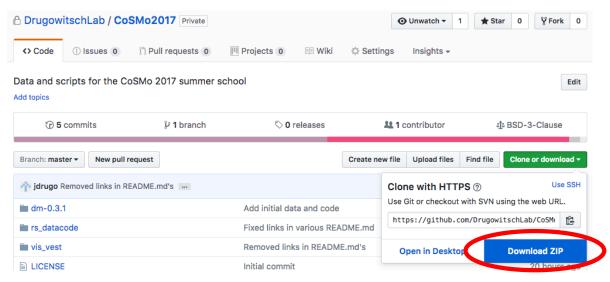
Neural correlates of perceptual decisions

Extended tutorial: multi-modal decision-making

Source code

Get code/data from

https://github.com/DrugowitschLab/CoSMo2017



Extract & open folder in Matlab, try load('phs_ah.mat')

Add dm library to path

>> addpath('dm-0.3.1/matlab/')
>> ddm_fpt_example

Road map

→ Perceptual decision-making

speed/accuracy trade-off experiments investigating perceptual decisions characteristics of behavior

Decision-making models accumulator / diffusion models fit to behavior & issues

Normative analysis

simple scenario: task difficulty known more complex: varying task difficulty time-varying decision boundaries: behavioral evidence

Neural correlates of perceptual decisions

Extended tutorial: multi-model decision-making

Decisions are endemic

Every action is a decision

Requires: identification of choice options

e.g., should I stay, or should I go?

gather knowledge (external/internal) about either option

evaluate choices with respect to expected outcome

e.g., if I stay there will be trouble if I go there will be double

Main focus today: perceptual decisions

(decisions based on what we observe)

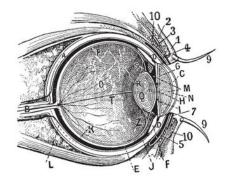
speed? accuracy? underlying process?

Uncertain information

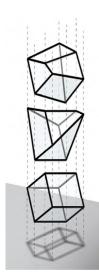
Information we have about the world is uncertain

Uncertainty due to noise and ambiguity

Noisy sensory noise (physical limitations) discretization (spatial limitations) noise in the environment



Ambiguous no unique reconstruction of environment e.g. visual 3D to 2D mapping mixture of odors



(Little) time contributes to uncertainty

There is no such a thing as an instantaneous percept

Yabus (1967)

Uncertain evidence is accumulated across time / space

Perceptual decisions (at least) require evidence accumulation across time

How much evidence should we accumulate?

More evidence is expected to lead to better decisions \rightarrow why ever stop?

("Not to be reproduced", Magritte, 1937)

Reasons to stop accumulating: evidence/time is costly world is volatile

evidence "flow" is limited

Costly evidence introduces speed/accuracy trade-off

accumulate evidence over time

fast choices ← speed/accuracy trade-off → slow choices

might be inaccurate

come at low evidence cost

should be accurate

come at high cost

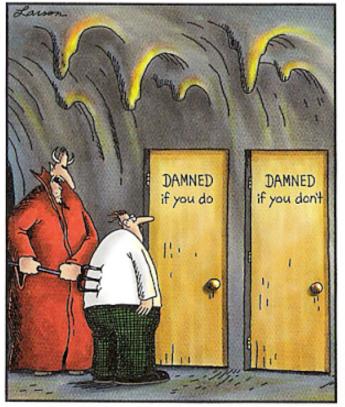
The speed/accuracy trade-off in experiments

Forced choice paradigm

- show two simuli (sequentially or simultaneously)
- choice is always A or B (or A and notA)
- choice is made (forced) on each trial
- difficulty might vary across blocks or trials
- record reaction time (RT) choice

Examples

- word vs. non-word decisions
- numerosity judgments
- random dot motion task



"C'mon, c'mon-it's either one or the other."

(e.g., Ratcliff, Gomez & McKoon, 2004)

(e.g., Ratcliff, Gomez & McKoon, 2004)

stay

(e.g., Ratcliff, Gomez & McKoon, 2004)

slan

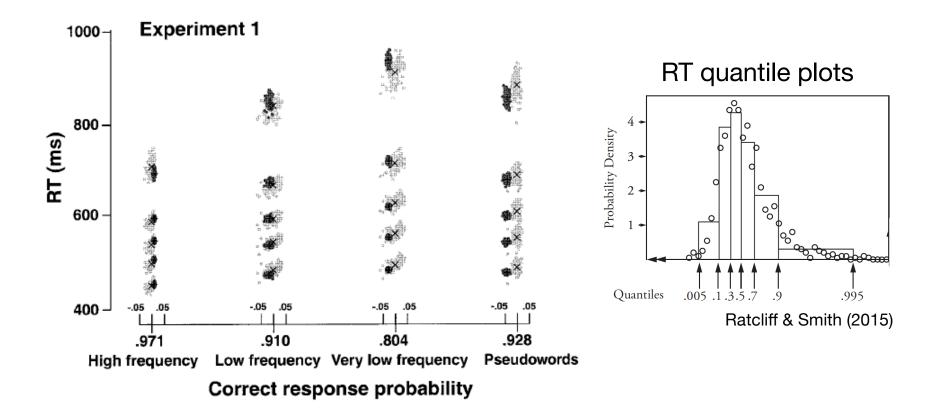
(e.g., Ratcliff, Gomez & McKoon, 2004)

gohm

(e.g., Ratcliff, Gomez & McKoon, 2004)

goon

(e.g., Ratcliff, Gomez & McKoon, 2004)



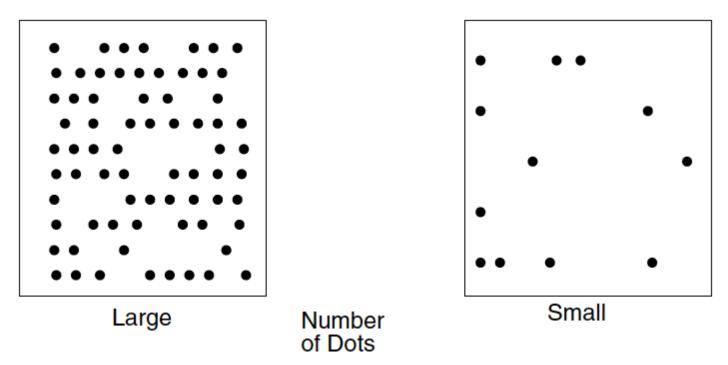
Uncertainty: processing words / memory

Difficulty: word frequency / phonetic/lexical similarity / ...

Usual findings: decisions faster and more accurate for high-frequency words

Numerosity judgments

(e.g., Ratcliff, 2006)



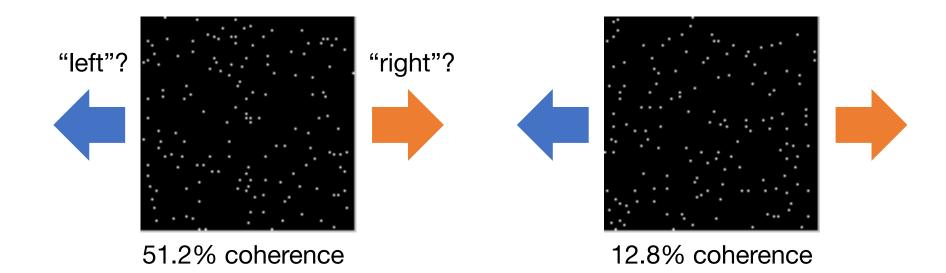
Examples of Stimuli for the Experiment

More/less than 50 dots?

Displays closer to 50-dot threshold: slower and less accurate

The random-dot motion task (RDM)

(e.g., Newsome, Britten, Movshon & Shadlen, 1989; Roitman & Shadlen, 2002)



"respond as quickly and accurately as possible"

Uncertainty: stimulus is inherently ambiguous

Difficulty: coherence

Road map

Perceptual decision-making

speed/accuracy trade-off

experiments investigating perceptual decisions

characteristics of behavior

Decision-making models accumulator / diffusion models fit to behavior & issues

Normative analysis

simple scenario: task difficulty known more complex: varying task difficulty time-varying decision boundaries: behavioral evidence

Neural correlates of perceptual decisions

Extended tutorial: multi-model decision-making

Behavior in the random dot motion task

Palmer, Huk & Shadlen (2005) dataset: 6 human subjects performing RDM task

```
load('phs_[subj_id].mat')
(subj_id ∈ {'ah', 'eh', 'jd', 'jp', 'mk', 'mm'})
```

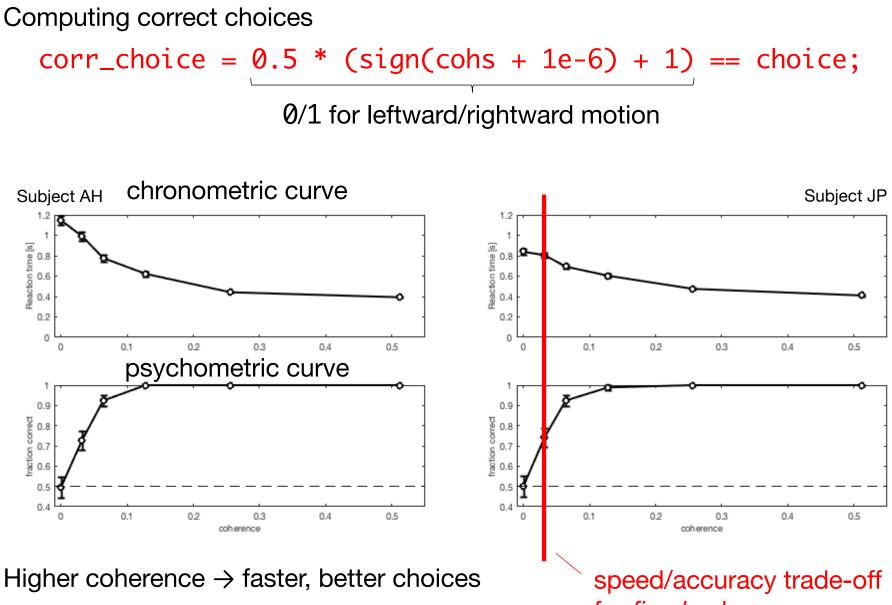
Contains three vector, one element per trial:

choice	0 - "left" / 1 - "right"
rt	reaction time in seconds
cohs	signed coherence, positive/negative - rightwards/leftwards motion

To become familiar with dataset:

- open plot_psych_chron.m in editor
- update line 17 to compute vector corr_choice (0 = incorrect, 1 = correct) Hint: choice is correct if "right" for rightward motion, "left" for leftward motion

Behavior in the random dot motion task

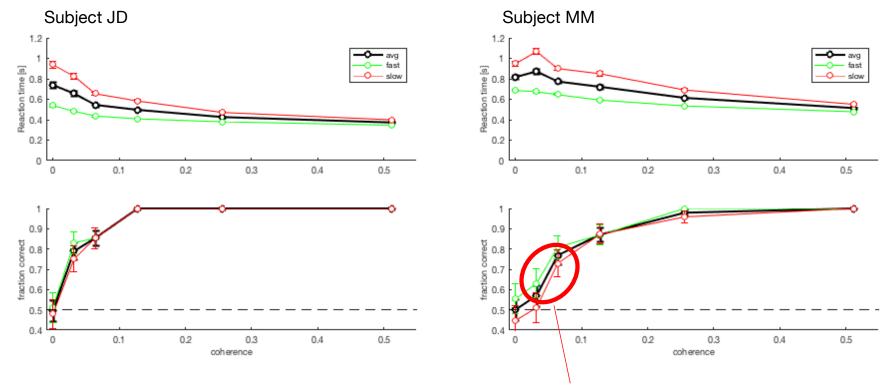


for fixed coherence

Speed/accuracy trade-off in the PHS dataset?

load('phs_[subj_id].mat')
plot_speed_accuracy

per-coherence RT median split

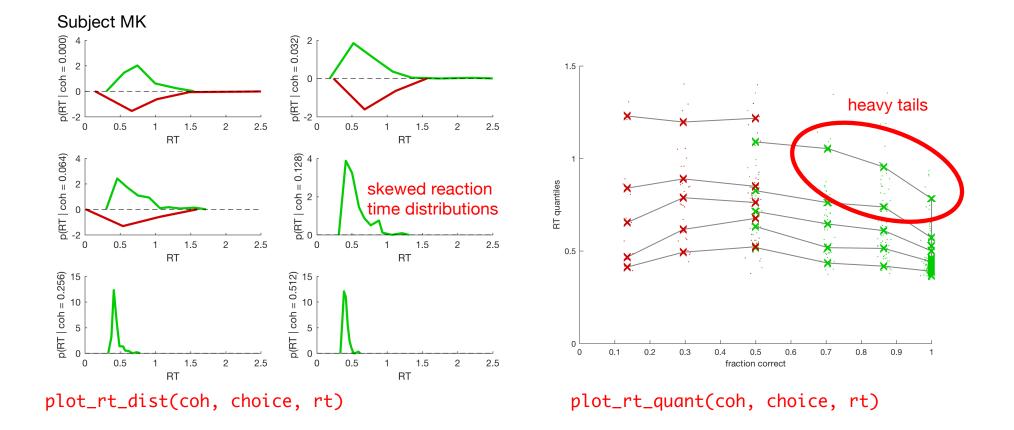


faster choices also more accurate?

Here, most RT fluctuations driven by fluctuations in stimulus *informativeness* (would need to compare fast/slow choices for same stimulus sequence)

Usually skewed reaction time distributions

Try plot_rt_dist and plot_rt_quant

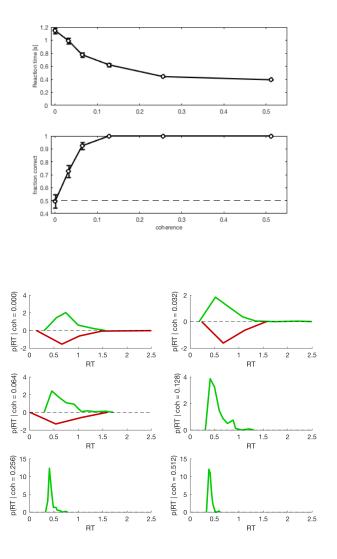


Features of a successful decision-making model

Fits *mean reaction times* and *choice probability* across conditions

Accounts for *variability*: reproduces RT distributions

Reproduces *task difficulty influence*: - easy task: fast choices, high accuracy - hard task: slow choices, low accuracy (to be revisited)



Road map

Perceptual decision-making speed/accuracy trade-off experiments investigating perceptual decisions characteristics of behavior

→ Decision-making models

accumulator / diffusion models fit to behavior & issues

Normative analysis

simple scenario: task difficulty known more complex: varying task difficulty time-varying decision boundaries: behavioral evidence

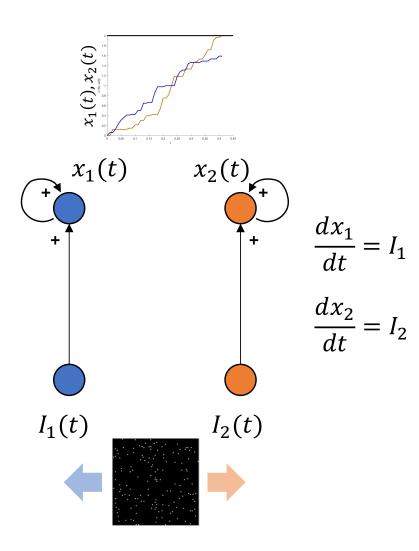
Neural correlates of perceptual decisions

Extended tutorial: multi-model decision-making

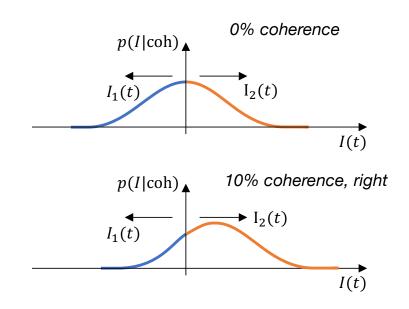
Accumulator models

Noisy evidence in small samples of continuous evidence stream

Accumulation to bound

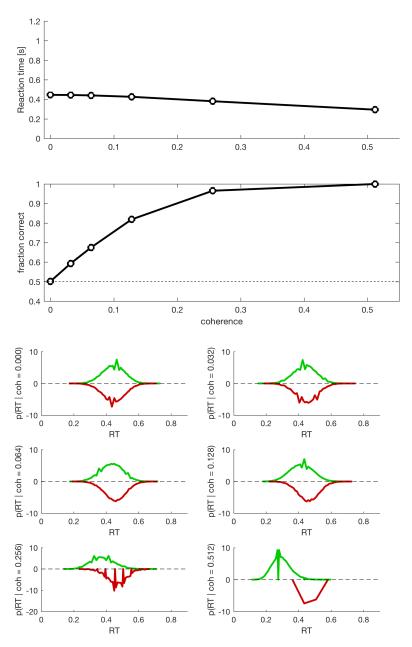


Inputs modulated by coherence, motion direction



Exists in multiple variant, with discrete (Poisson) inputs, continuous (Gaussian) inputs, etc.

Accumulator model have their issues



Don't well reproduce reaction-time modulation by difficulty

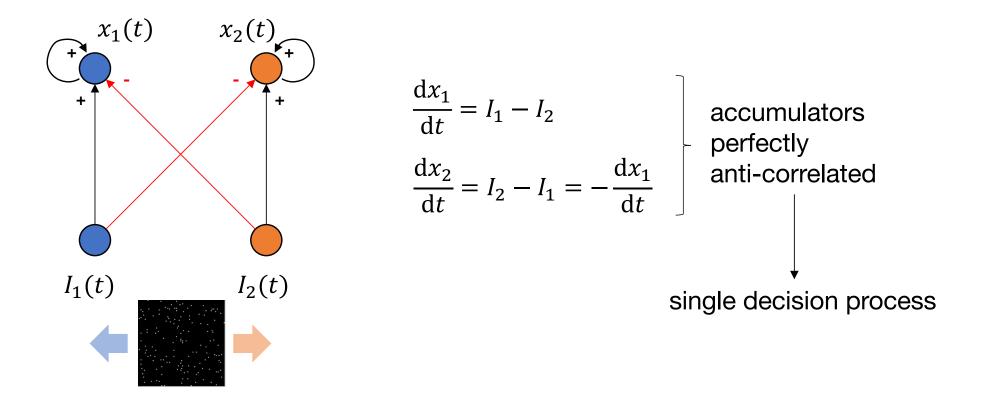
Feature variable reaction times, but *not with with a heavy-tailed distribution*

sim_accum.m

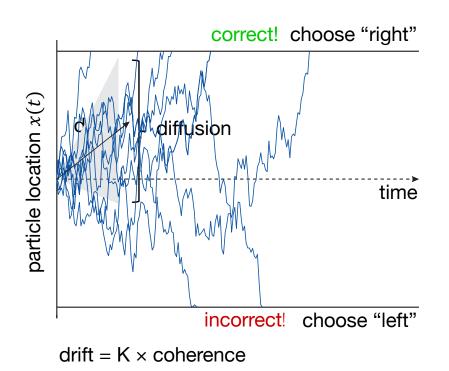
The drift diffusion model

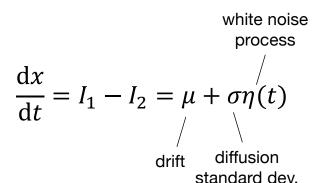
(or diffusion decision model; or diffusion model; Ratcliff, 1978)

Introduced by Ratcliff (1978) as model for memory recall; one of the most successful models in neuroscience



The drift diffusion model





 $|\mu|$ = mean evidence strength sign(μ) = determines correct choice $\frac{|\mu|}{\sigma}$ = signal/noise ratio

accumulating uncertain evidence = stochastic particle motion commit to / execute choice = threshold crossing

Simulating the drift-diffusion model

Using the Euler method:

From continuous-time process...

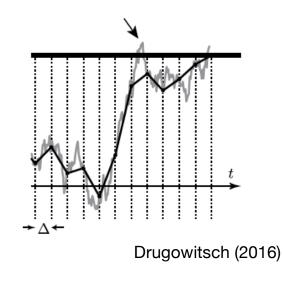
$$\frac{\mathrm{d}x}{\mathrm{d}t} = \mu + \sigma\eta(t) \approx \frac{x(t+\delta t) - x(t)}{\delta t}$$

...to discrete-time simulation

$$x(t + \delta t) = x(t) + \mu \delta t + \sqrt{\delta t} \sigma z$$

$$\downarrow z \sim N(0,1)$$

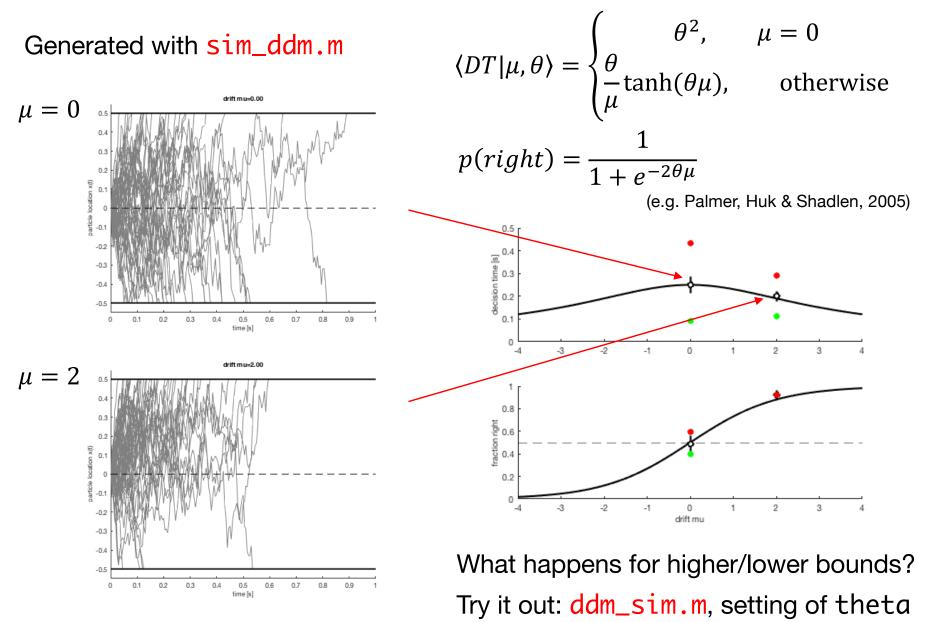
(zero-mean unit-variance Gaussian random number) Careful: too large δt cause biased first-passage time



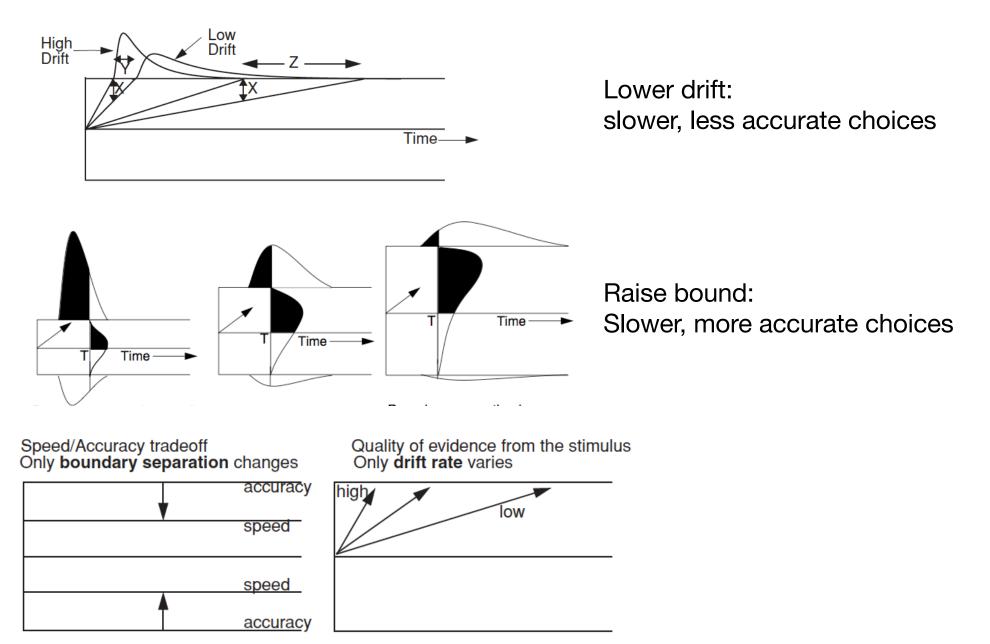
Alternatives: see dm library

See, for example, sim_ddm.m

Some diffusion model predictions



Adjusting drift and boundary heights



Ratcliff & McKoon (2008)

Diffusion models match well observed behavior

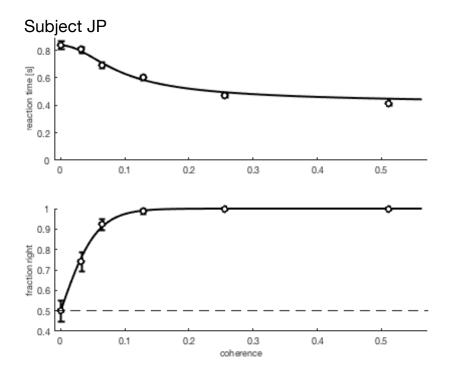
Assume that $\mu = k \times \text{coherence}$,

reaction time = diffusion model decision time DM + non-decision time t_{nd} .

Gives 3 parameters: k, θ, t_{nd}

Minimizing parameter log-likelihood given mean RTs and choice probabilities (Palmer, Huk & Shadlen, 2005)

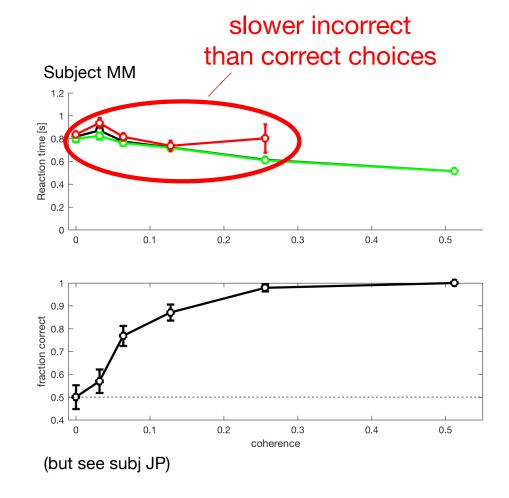
fit_psych_chron(cohs, choice, rt)



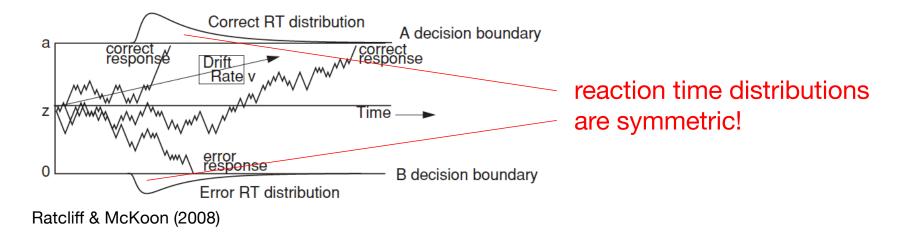
...but there are issues: #1 symmetry

Incorrect choices are frequently slower than correct choices

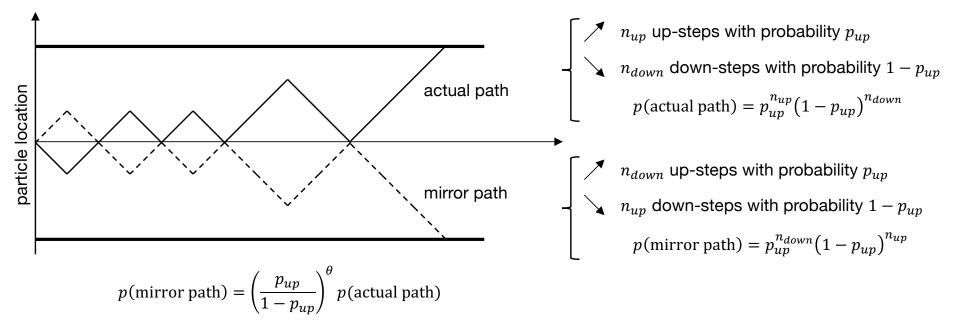
Uncomment relevant lines in plot_psych_chron.m



Vanilla diffusion models predict symmetric RT distributions

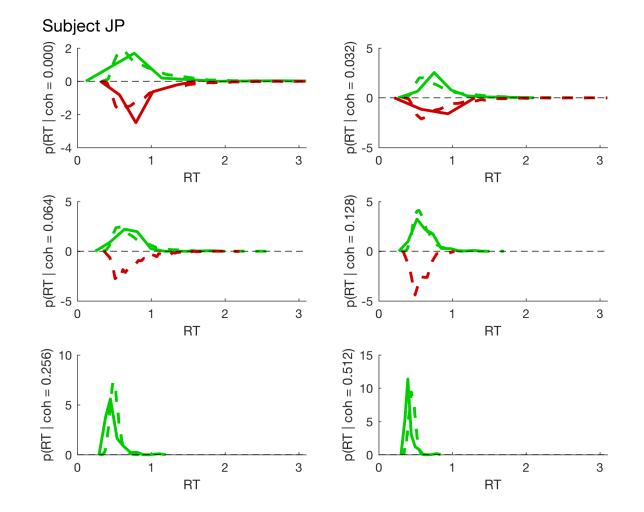


Reason: flipping path scales its probability by a constant



...but there are issues: #2 long-tail predictions

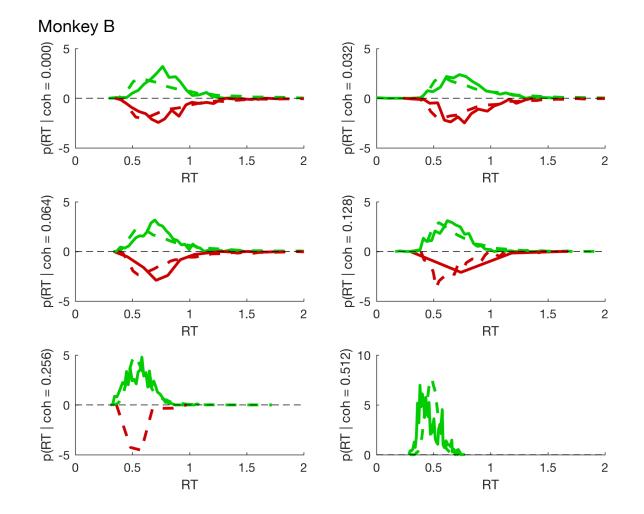
Observed reaction time distributions don't always have a long tail Try plot_fitted_rt_dists(cohs, choice, rt)



Monkeys are even less patient

Roitman & Shadlen (2002) dataset: 2 monkeys performing RDM task

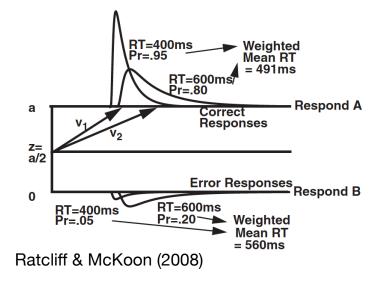
load('rs_[monkey_id].mat') (monkey_id ∈ {'b', 'n'})
plot_fitted_rt_dists(cohs, choice, rt)

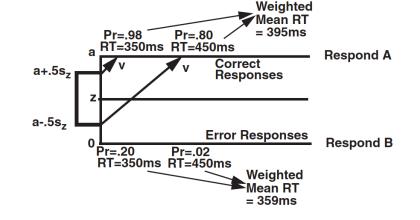


Heuristic "fix": the Ratcliff diffusion model

- + diffusion models implement both, and fit mean RTs and choice probabilities
- predict same correct/incorrect RTs
- don't match reaction time distributions

How to fix: add more parameters!





Variable drift rates: slower errors

Variable starting point: faster errors

Road map

Perceptual decision-making

speed/accuracy trade-off

experiments investigating perceptual decisions

characteristics of behavior

Decision-making models accumulator / diffusion models fit to behavior & issues

→ Normative analysis

simple scenario: task difficulty known more complex: varying task difficulty time-varying decision boundaries: behavioral evidence

Neural correlates of perceptual decisions

Extended tutorial: multi-model decision-making

Normative approach: how ought we make decisions?



handling uncertain information using Bayesian statistics

Rev. Thomas Bayes (1701-1761)

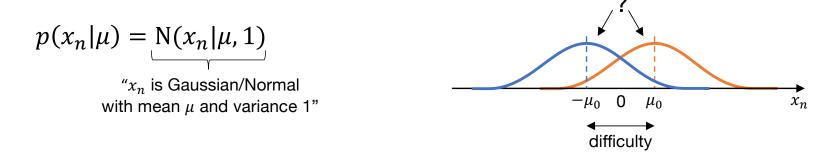
trading of benefits with costs using Dynamic programming

Richard E. Bellman (1920-1984)

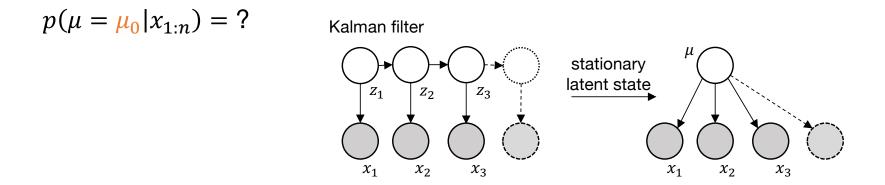
A model for the momentary evidence

Assume: fixed coherence μ_0 , two motion directions, $\mu \in \{-\mu_0, \mu_0\}$. uniform prior, $p(\mu = -\mu_0) = p(\mu = \mu_0) = \frac{1}{2}$

At any point *n* in time: noisy observation x_n of μ ,



Observe $x_1, x_2, ...$; identify if they came from blue or orange distribution



Why not use Kalman fiter? Explicit derivations provide further insight

Deriving the posterior

$$p(\mu = \mu_0 | x_{1:N}) = \frac{p(x_{1:N} | \mu = \mu_0) p(\mu = \mu_0)}{p(x_{1:N})}$$

$$\propto_{\mu} p(x_{1:N} | \mu = \mu_0) p(\mu = \mu_0)$$

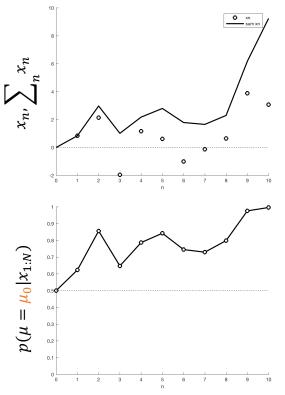
$$= p(\mu = \mu_0) \prod_n N(x_n | \mu = \mu_0, 1)$$

$$\propto_{\mu} \prod_n \frac{1}{2\pi} e^{-\frac{(x_n - \mu)^2}{2}}$$

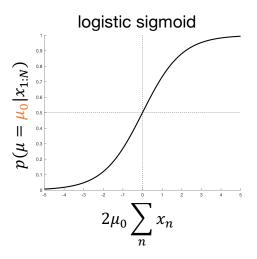
$$\propto_{\mu} e^{-\frac{N\mu^2}{2} + \mu \sum_n x_n}$$

$$= e^{-\frac{N\mu_0^2}{2} + \mu_0 \sum_n x_n}$$

$$p(\mu = -\mu_0 | x_{1:N}) \propto_{\mu} e^{-\frac{N(-\mu_0)^2}{2} - \mu_0 \sum_n x_n}$$
$$p(\mu = \mu_0 | x_{1:N}) = \frac{e^{-\frac{N\mu_0^2}{2} + \mu_0 \sum_n x_n}}{e^{-\frac{N\mu_0^2}{2} + \mu_0 \sum_n x_n} + e^{-\frac{N\mu_0^2}{2} - \mu_0 \sum_n x_n}}$$
$$= \frac{1}{1 + e^{-2\mu_0 \sum_n x_n}}$$



accum_evidence_discrete.m



Moving to continuous time

 μ_0

 $-\mu_0$

Smaller time steps δt : less reliable evidence δx_n per time step

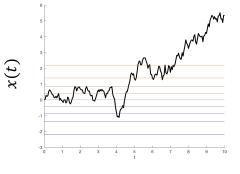
 δx_n

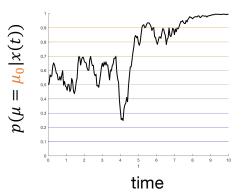
 $p(\delta x_n | \mu) = \mathcal{N}(\delta x_n | \mu \delta t, \delta t)$

$$p(\mu = \mu_0 | x_{1:N}) \propto_{\mu} e^{-\frac{\mu_0^2}{2}N\delta t + \mu_0 \sum_n \delta x_n}$$
$$= e^{-\frac{\mu_0^2}{2}t + \mu_0 x(t)}$$
$$p(\mu = \mu_0 | x_{1:N}) = \frac{1}{1 + e^{-2\mu_0 x(t)}}$$

Shows why diffusion models are useful

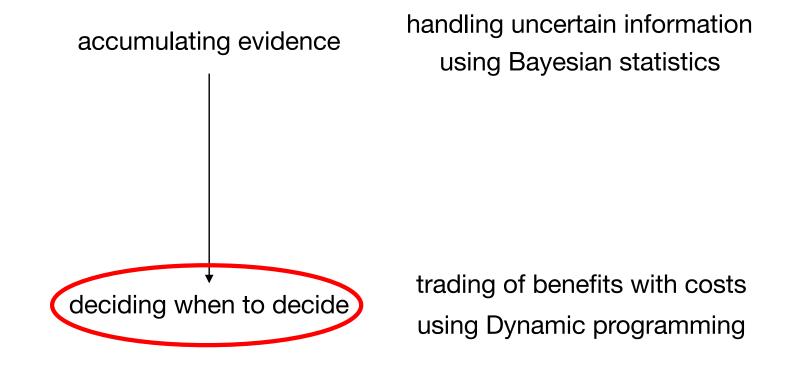
$$\frac{dx}{dt} = \mu + \eta(t) \qquad x(t) > 0 \text{ implies } p(\mu = \mu_0 | x_{1:N}) > \frac{1}{2} \\ x(t) < 0 \text{ implies } p(\mu = \mu_0 | x_{1:N}) < \frac{1}{2}$$





accum_evidence_continuous.m

Normative approach: how ought we make decisions?



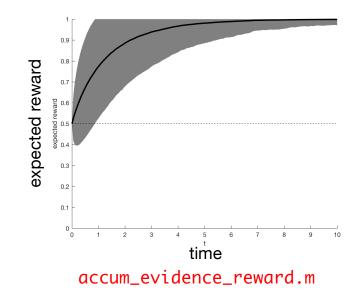
Rev. Thomas Bayes (1701-1761)

Richard E. Bellman (1920-1984)

When to stop accumulating evidence?

Assume: aim is to maximize reward (reward 1/0 for correct/incorrect choices)

more momentary evidence higher expected reward accumulate forever!



Stopping to accumulate is only rational in presence of cost

- Motivational/effort cost
- Cost of attention/computation
- Opportunity cost; less time on future choices

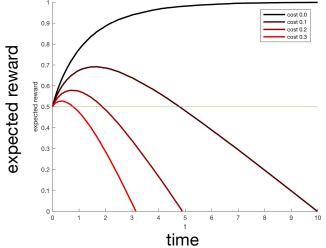
(can be internal & external)

Objective functions

Maximizing expected reward for single choice

Payoff 1 for correct choice, 0 for incorrect choice, c per second accumulation

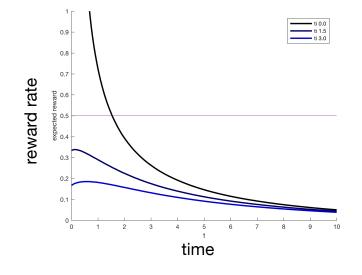
$$ER = PC - c\langle t \rangle$$



Maximizing expected reward across multiple choices

Sequence of choices with inter-choice-interval t_i

$$RR = \frac{PC - c\langle t \rangle}{\langle t \rangle + t_i}$$



Optimal stopping required closed-loop control

Interlude: dynamic programming (DP)

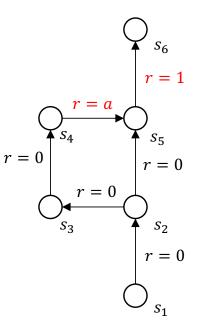
Markov decision process (MDP)

- set of states, s_1, s_2, \dots
- set of actions, a_1, a_2, \dots
- transition probabilities, p(s'|s, a)
- rewards, r(s, a)
- discount factor, $\gamma \leq 1$

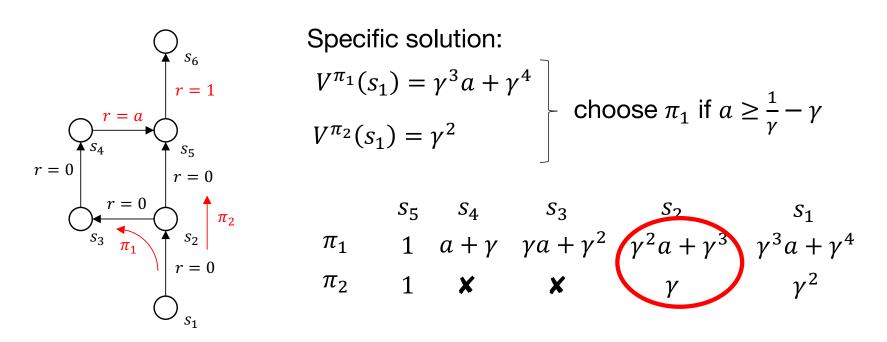
Aim: find optimal policy, $\pi(s)$ returning action for each state to maximize expected discounted future reward (or *return*)

$$V^{\pi}(s) = \left\langle \sum_{n=0}^{\infty} \gamma^n r(s_n, \pi(s_n)) \right\rangle_{p(s_1, s_2, \dots \mid \pi)} = r(s, \pi(s)) + \gamma \langle V^{\pi}(s') \rangle_{p(s' \mid s, \pi)}$$

"value" of state s under policy π



Example: navigation



Bellman's principle of optimality

"optimal policy: whatever initial state/decision, the remaining decisions must constitute an optimal policy with regard to state resulting from first decision"

Bellman's equation:

$$V^{*}(s) = \max_{a} \{r(s, a) + \gamma \langle V^{*}(s') \rangle_{p(s'|s,a)} \}$$
the maximizing action provides the optimal policy

Dynamic programming applied to optimal stopping

- set of states, s_1, s_2, \dots
- set of actions, a_1, a_2, \dots
- transition probabilities, p(s'|s, a)
- rewards, r(s, a)

- \rightarrow accumulated evidence/belief, $g(t) \equiv p(\mu = \mu_0 | x(t))$
- → accumulate/make choice
- \rightarrow change of accumulated evidence, belief transition p(q'|q)
- choose μ_0 : r = qchoose $-\mu_0$: r = 1 - gaccumulate another δt : $r = -c\delta t$
- discount factor, $\gamma \leq 1$

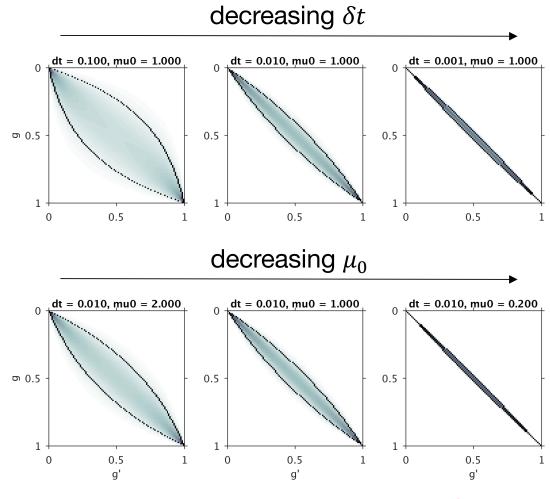
 \rightarrow assume $\gamma = 1$

Bellman's equation for perceptual decisions

$$V(g) = \max\left\{g, 1 - g, \langle V(g') \rangle_{p(g'|g)} - c\delta t\right\}$$

The belief transitions function

Examples for p(g'|g)

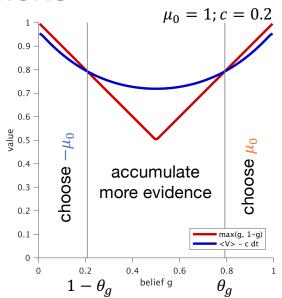


plot_g_trans_point_hyp.m

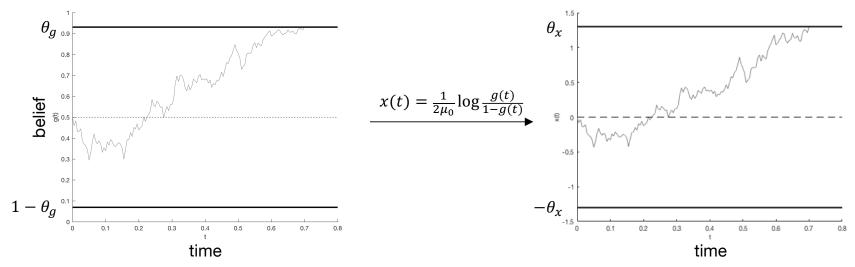
The value function for perceptual decisions

$$V(g) = \max\left\{g, 1 - g, \langle V(g') \rangle_{p(g'|g)} - c\delta t\right\}$$

What happens if c or μ_0 changes? Try it out: plot_dp_valueintersect_point(μ_0, c)



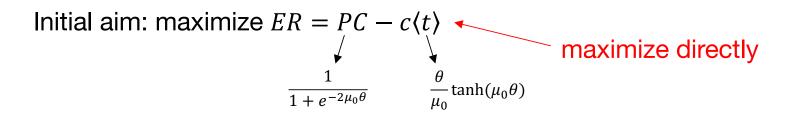
plot_dp_diffusion_point(µ₀, c):



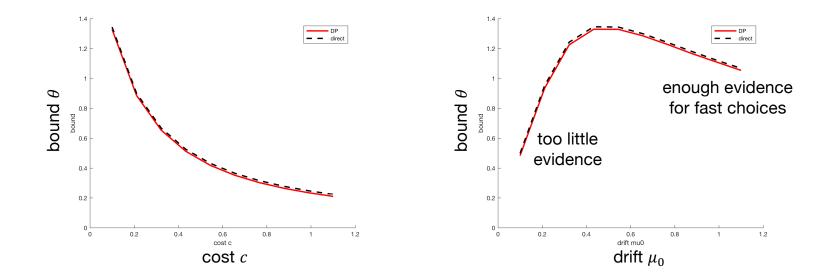
Diffusion models implement the reward-maximizing strategy

Finding the bound without dynamic programming

We now know: diffusion model with time-invariant bound is optimal



Complete direct_bound(μ_0, c) in plot_dp_bound_direct_maximization.m



The sequentual probability ratio test (SPRT)

For this simple case, the optimal policy has been known for a while.

Sequential probability ratio test (SPRT) (Wald, 1947; Wald & Wolfowitz, 1948; Turing, 194?)

Given two hypotheses H_1 , H_2 with known likelihoods $p(x|H_1)$, $p(x|H_2)$; sequence x_1 , x_2 , ... generated by which hypothesis?

Among all test with same power (type 1 error), SPRT requires least samples on average (Wald & Wolfowitz, 1948).

SPRT accumulates evidence as long as

$$B^* \leq \frac{\prod_n p(x_n | H_1)}{\prod_n p(x_n | H_2)} \leq A^*$$

Relates to diffusion models and expected reward maximization (Bogacz et al., 2006)

Limitation: assumes known likelihood functions (e.g. known coherence) the same applies to our derivation so far

This rarely holds in real-world decisions!

Road map

Perceptual decision-making

speed/accuracy trade-off

experiments investigating perceptual decisions

characteristics of behavior

Decision-making models accumulator / diffusion models fit to behavior & issues

Normative analysis

simple scenario: task difficulty known

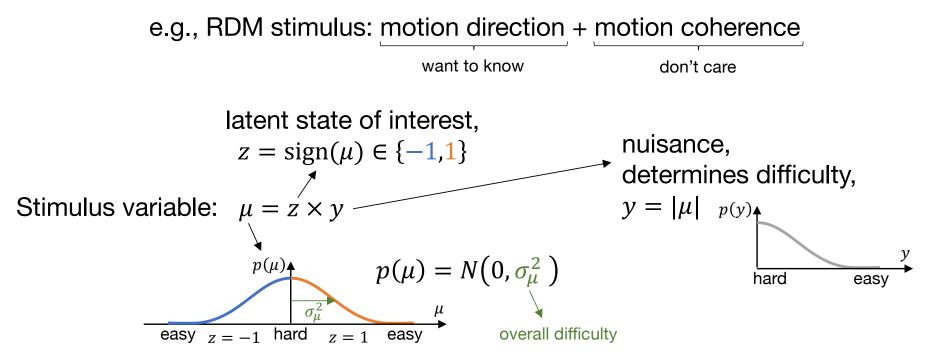
 more complex: varying task difficulty time-varying decision boundaries: behavioral evidence

Neural correlates of perceptual decisions

Extended tutorial: multi-model decision-making

Introducing difficulty as a nuisance

Nuisance: not central to the question, but we have to deal with it



Momentary evidence: $p(\delta x_n | \mu) = N(x_n | \mu \delta t, \delta t)$ noisy information about μ

Aim: $p(z = 1 | \delta x_1, \delta x_2, ...) = \int p(z = 1, y | \delta x_1, \delta x_2, ...) dy = p(\mu \ge 0 | \delta x_1, \delta x_2, ...)$ identify latent state *without* nuisance

Evidence accumulation with nuisance

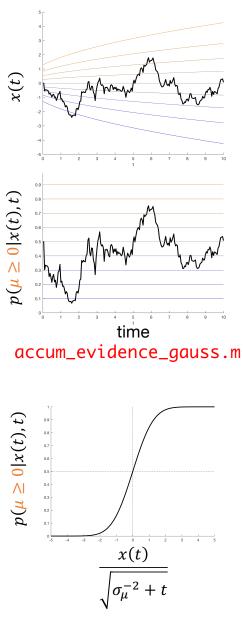
Derivation in two steps: posterior over latent state and nusiance, ...

$$p(\mu|\delta x_{1:N}) \propto_{\mu} N(\mu|0,\sigma_{\mu}^{2}) \prod_{n} N(\delta x_{n}|\mu\delta t,\delta t)$$
$$\propto_{\mu} e^{-\frac{\mu^{2}}{2}\left(\frac{1}{\sigma_{\mu}^{2}}+t\right)+\mu x(t)}$$
$$\propto_{\mu} N\left(\mu\left|\frac{x(t)}{\sigma_{\mu}^{-2}+t},\frac{1}{\sigma_{\mu}^{-2}+t}\right)\right)$$

... then averaging over nuisance

$$p(\mu \ge 0 | x(t), t) = \int_0^\infty p(\mu | \delta x_{1:N}) d\mu = \Phi\left(\frac{x(t)}{\sqrt{\sigma_\mu^{-2} + t}}\right)$$

Posterior belief now depends on both x(t) and t



Consequences for optimal stopping

Mapping between belief g(t) and particle location x(t) becomes time-dependent

$$g(t) \equiv p(\mu \ge 0 | x(t), t) = \Phi\left(\frac{x(t)}{\sqrt{\sigma_{\mu}^{-2} + t}}\right)$$

→ the expected change p(g'|g,t) also depends on time required to compute expected return for accumulating more evidence

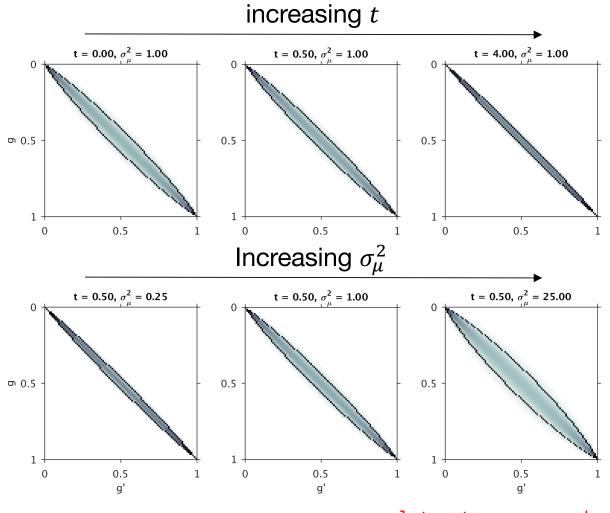
 \rightarrow Value function depends on g (or x) and time

$$V(g,t) = \max \left\{ \begin{array}{l} g, 1 - g, \langle V(g', t + \delta t) \rangle_{p(g'|g,t)} - c \delta t \right\}$$

deciding
immediately accumulating more evidence,
and deciding later

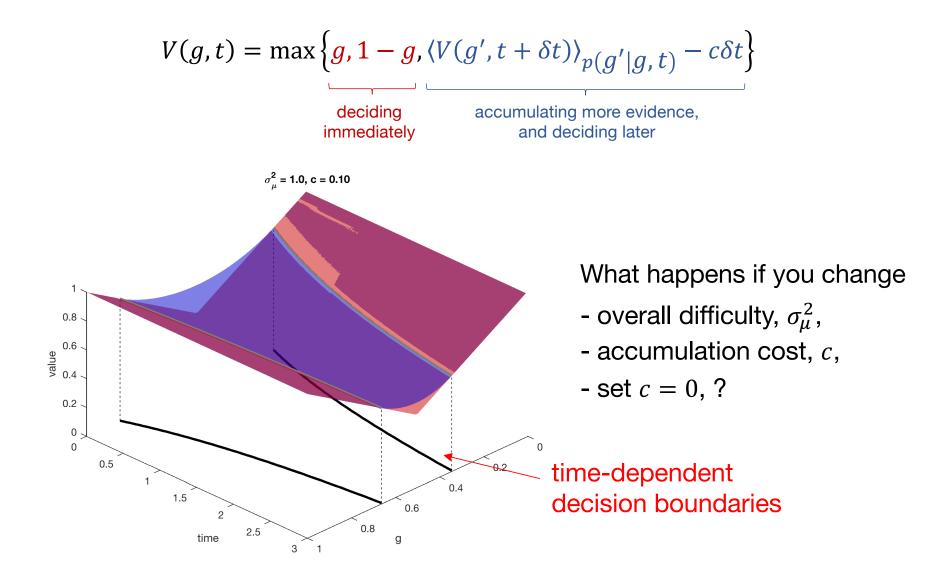
 \rightarrow decision boundaries depend on time

The belief transition function, unknown evidence reliability



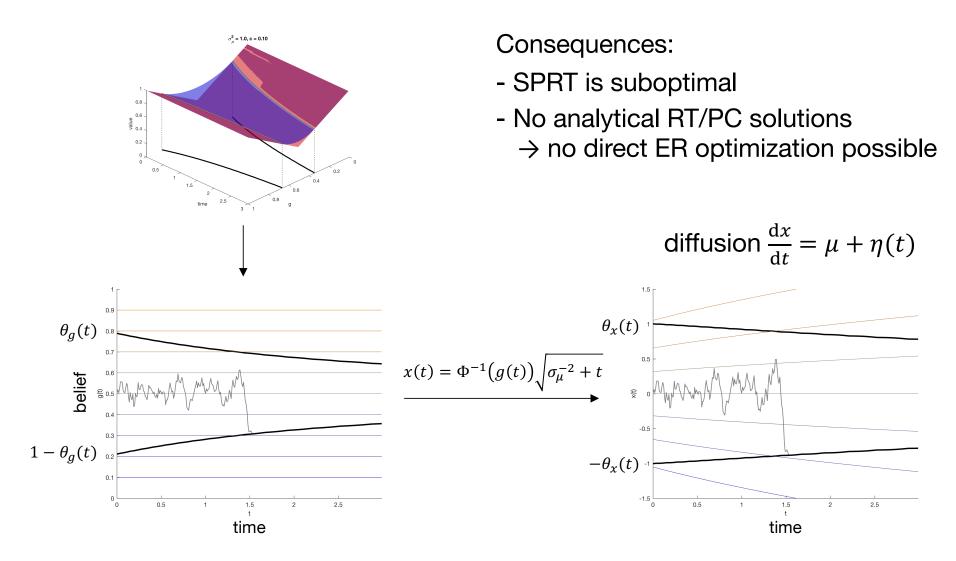
plot_g_trans_gauss_hyp.m

The value function and decision boundaries



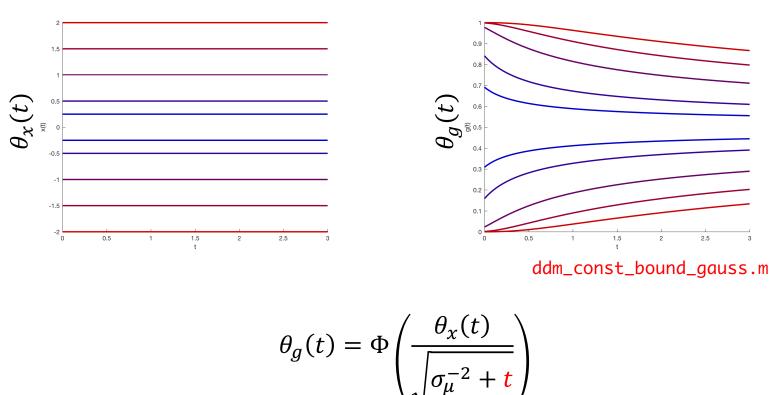
plot_dp_valueintersect_gauss(σ_{μ}^2, c)

Diffusion models with time-dependent boundaries



Unknown evidence reliability \rightarrow collapsing boundary diffusion model optimal

Are DDMs with time-invariant bounds suboptimal?

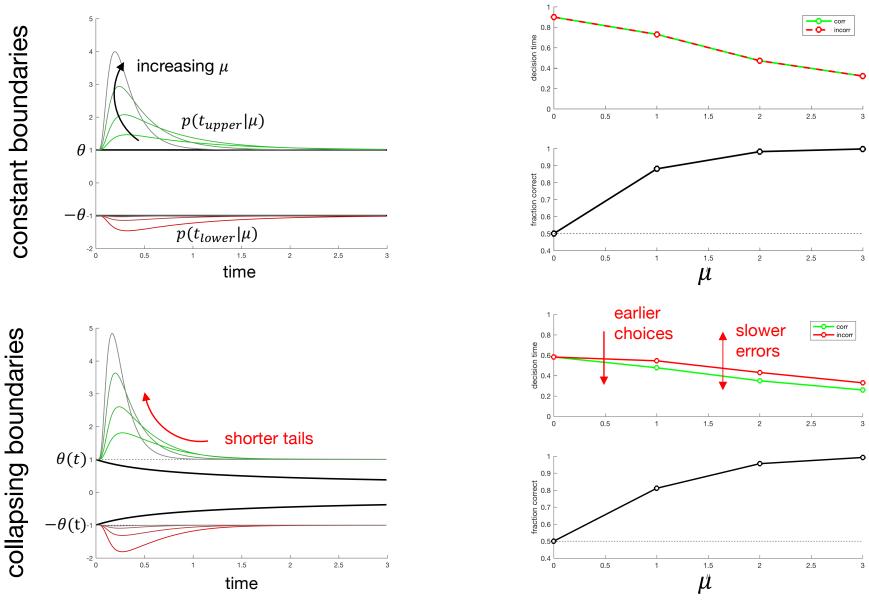


bounds in belief space

diffusion model bounds

Constant diffusion model bounds implement collapsing bounds in belief \rightarrow might be close-to-optimal (under certain circumstances)

Consequence of time-dependent boundaries



plot_fpt_vary_bound_example.m

Road map

Perceptual decision-making

speed/accuracy trade-off

experiments investigating perceptual decisions

characteristics of behavior

Decision-making models accumulator / diffusion models fit to behavior & issues

Normative analysis

simple scenario: task difficulty known more complex: varying task difficulty

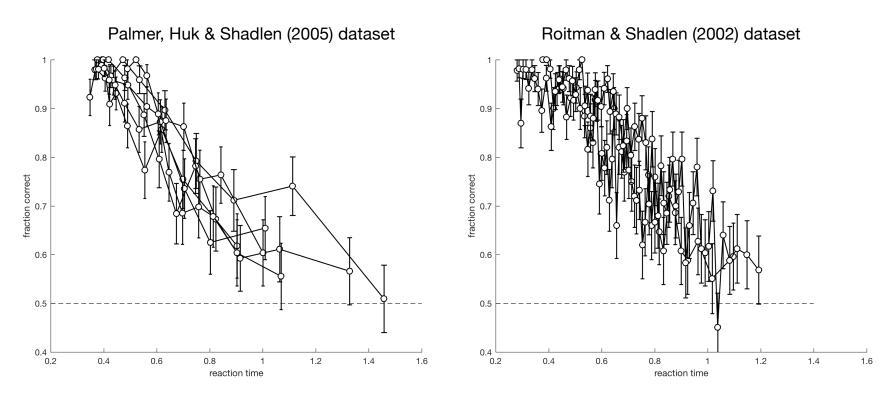
time-varying decision boundaries: behavioral evidence

Neural correlates of perceptual decisions

Extended tutorial: multi-model decision-making

Evidence for bound collapse

Collapsing bound in belief \rightarrow predicts dropping performance over time



plot_pcorrect_over_time.m

In theory: we could reconstruct decision boundaries (in belief) from above plots In practice: the non-decision time might be stochastic \rightarrow prevents direct mapping

Are boundaries generally collapsing?

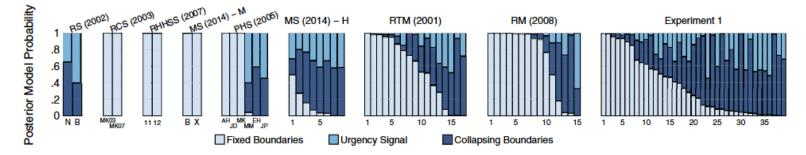
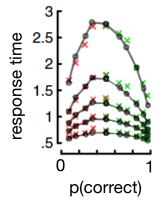


Figure 6. Approximations to posterior model probabilities in favor of the fixed bounds model with between trial variability parameters and the urgency signal and collapsing bounds models without between trial variability parameters. All details are as described for the top row of Figure 5.

(Hawkins et al., 2015)

- collapse in particle space, not belief space
- fitting quantile plots, that might miss tail information (which are affected by bound collapse)
- does it matter?

How much do we gain from a collapsing boundary? When do we expect such gains?



Hands on: benefit of collapsing boundaries

Aim: compare expected reward from optimal policy and that arising from diffusion model with tuned constant boundary

Follow instructions in collapse_gain.m

Hints: Value function V(g,t) returns expected reward when holding belief g at time t and behaving optimally thereafter. $\rightarrow V(g = \frac{1}{2}, t = 0)$ is expected reward for whole decision. See plot_dp_diffusion_gauss.m for how to find V(g,t).

> For given μ , we know probability correct and expected decision time for diffusion model with constant boundary. To compute expected reward, we can average these across multiple μ that well-represent $p(\mu) = N(\mu|0, \sigma_{\mu}^2)$. See fixedbound_er(.) in collapse_gain.m

Hands on: benefit of collapsing boundaries

Finding expected reward for optimal strategy:

gs = dp_discretized_g(dp_ng); [~, Ve] = dp_getvalues_gauss_hyp(gs, dp_dt, dp_maxt, ... sigmu2s(isigmu2), c); opter_sigmu2(isigmu2) = Ve(1,ceil(dp_ng / 2));

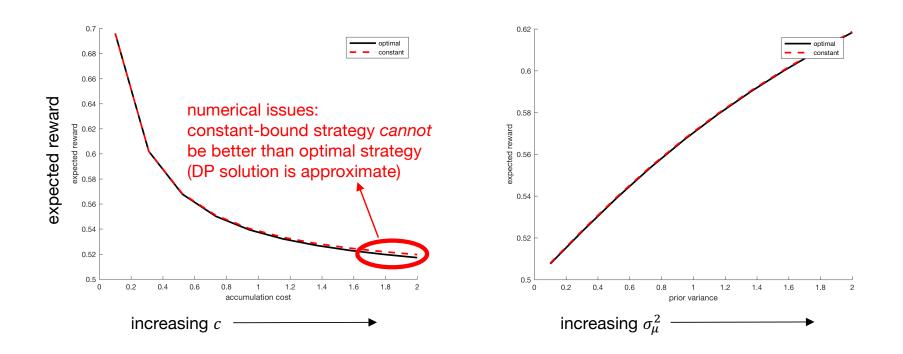
Completing fixedbound_er(.) to return expected reward for fixed bound:

```
pcs = 1 ./ (1 + exp(-2 * theta * abs(mus)));
dts = theta ./ mus .* tanh(theta * mus);
dts(mus == 0) = theta^2;
er = mean(pcs) - c * mean(dts);
```

Finding bound height that maximizes expected reward:

```
[~,er] = fminsearch(...
@(theta) -fixedbound_er(theta, cs(ic), sigmu2, fb_nmu),...
1);
conster_c(ic) = -er;
```

Hands on: benefit of collapsing boundaries



For these scenarios, optimal solution barely better than constant boundary (Recall: still collapsing boundary in belief)

Might change for stronger boundary collapse e.g., accumulation cost that increases over time (e.g., Drugowitsch et al., 2012)

Road map

Perceptual decision-making

speed/accuracy trade-off

experiments investigating perceptual decisions

characteristics of behavior

Decision-making models accumulator / diffusion models fit to behavior & issues

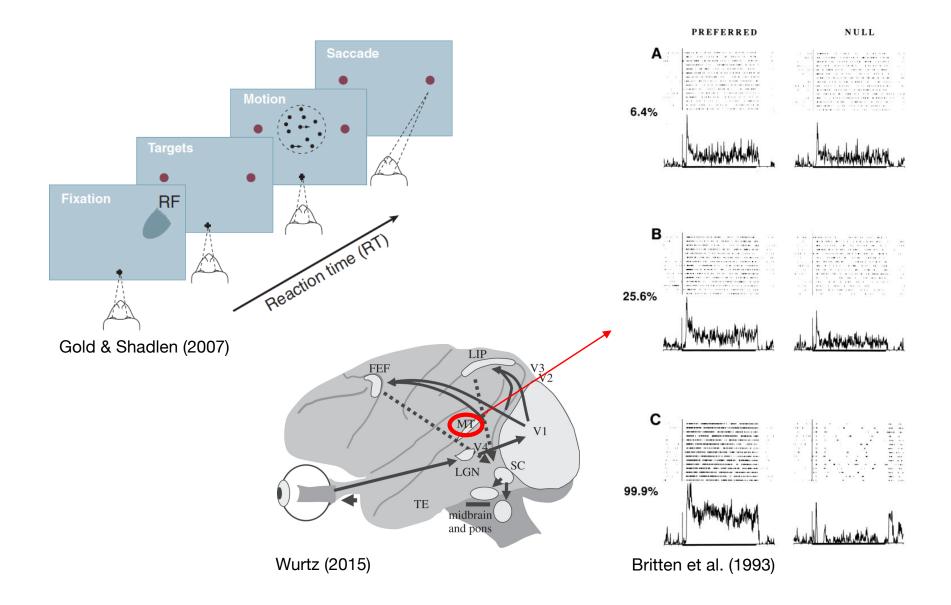
Normative analysis

simple scenario: task difficulty known more complex: varying task difficulty time-varying decision boundaries: behavioral evidence

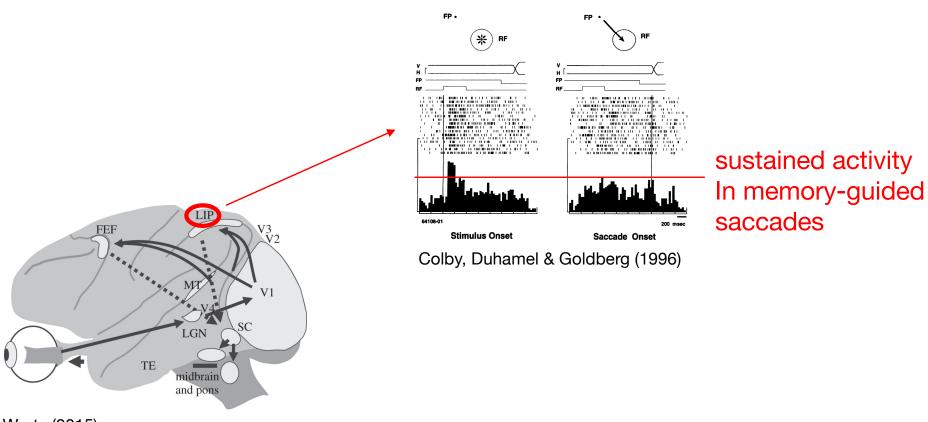
→ Neural correlates of perceptual decisions

Extended tutorial: multi-model decision-making

Neural signatures of perceptual decisions in macaque



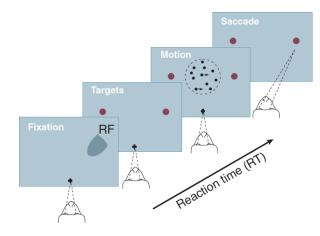
Memory-guided saccade coding in macaque LIP

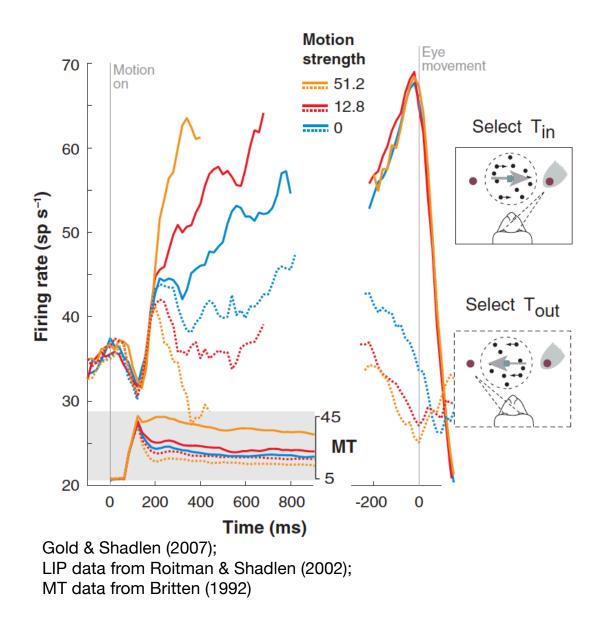


Memory Guided Saccade

Wurtz (2015)

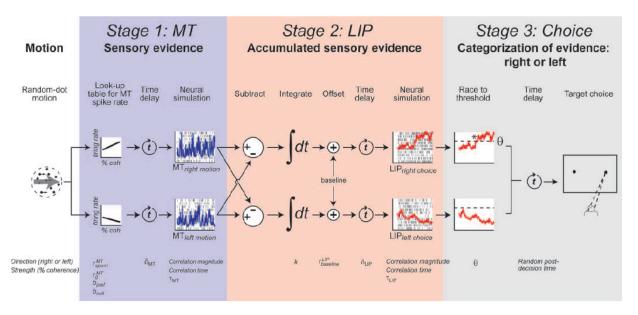
Evidence accumulation coding in macaque LIP

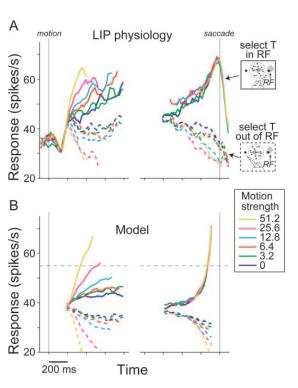




Does area LIP implement a diffusion model?

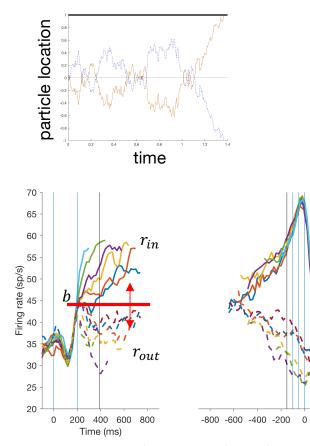




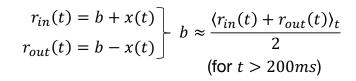


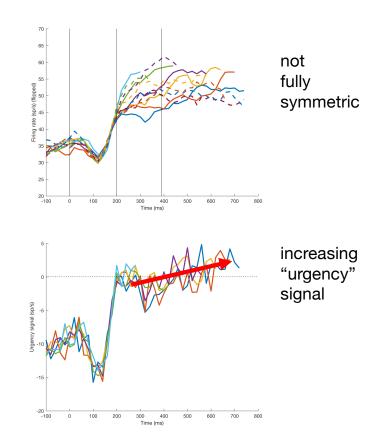
Mazurek et al. (2003)

Are LIP traces symmetric around common mean?

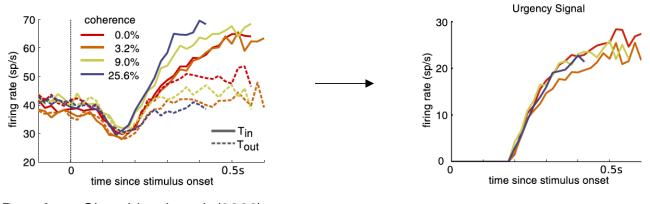


rs_datacode/lip_rt_roit_fig_7.m

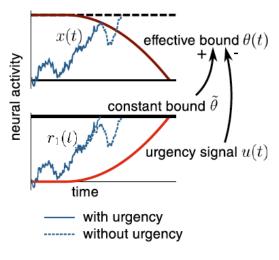




Urgency signal implements collapsing boundary

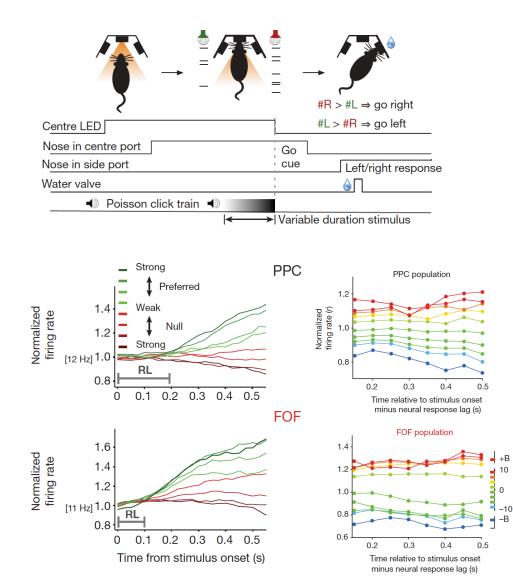


Data from Churchland et al. (2008)



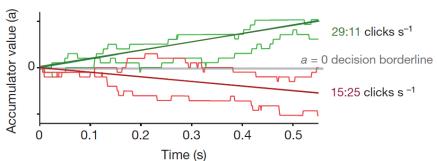
Drugowitsch et al. (2012)

Neural evidence accumulation signatures in rodents



Rat click count discrimination task

 \rightarrow accumulate click difference



seems to reflect accumulation

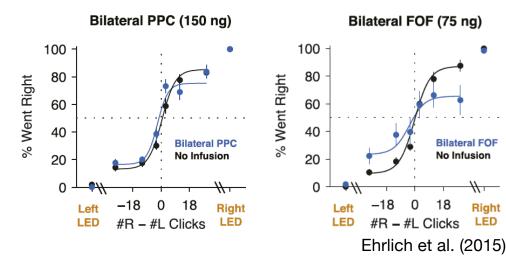
seems to reflect decision

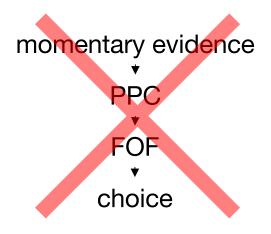
Imulato

Hanks et al. (2015)

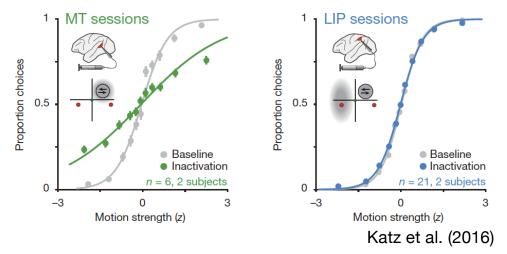
But: inactivation studies

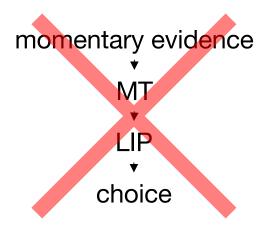
Rodents:





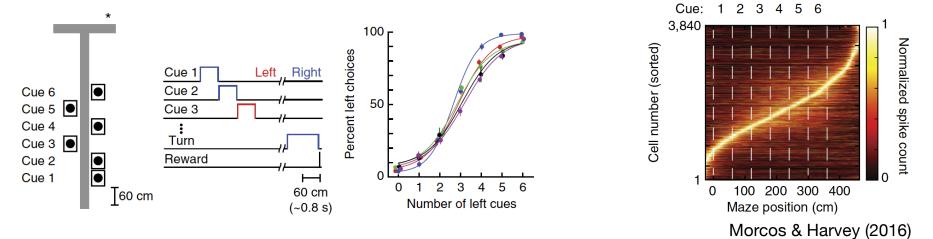
Monkeys:





Also: not everything that accumulates, ramps

Rodent VR cue accumulation task



This does not invalidate normative approach!

Neural implementation is less clear (there are multiple ways to implement evidence accumulation)

Road map

Perceptual decision-making

speed/accuracy trade-off

experiments investigating perceptual decisions

characteristics of behavior

Decision-making models accumulator / diffusion models fit to behavior & issues

Normative analysis

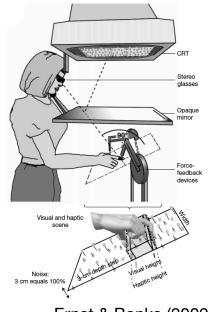
simple scenario: task difficulty known more complex: varying task difficulty time-varying decision boundaries: behavioral evidence

Neural correlates of perceptual decisions

→ Extended tutorial: multi-model decision-making

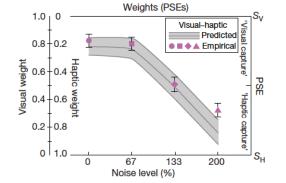
Bayesian cue combination

Frequently, evidence from multiple cues needs to be combined

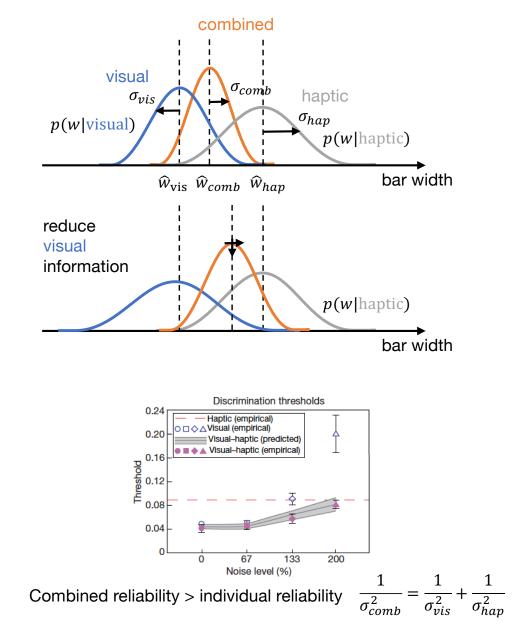


Ernst & Banks (2002)

Bayesian cue integration:



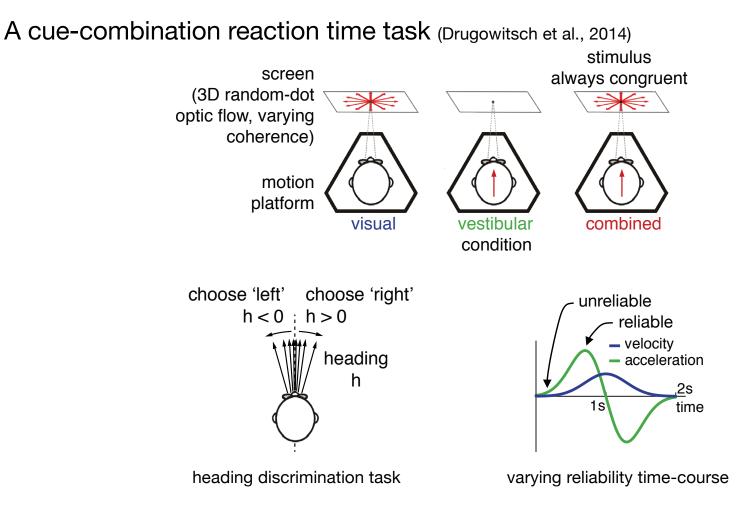
More reliable cue contributes more strongly



The speed/accuracy trade-off in mutlisensory decision-making

Standard cue combination paradigm is fixed-duration

- Ignores temporal evidence accumulation
- Frequently, decision time is under the decision-maker's control



Visual stimulus example

Elevation: 0.0, Azimuth: 90.0

Visual reliability modulated by coherence

Elevation: 0.0, Azimuth: 0.0

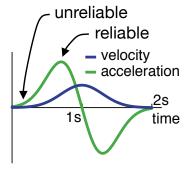
Evidence reliability modulated by four factors

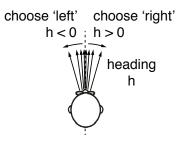
heading direction (angle away from straight-ahead)

visual flow field coherence

velocity/acceleration time-course

presence of multiple modalities





The vis/vest cue combination dataset

See content of vis_vest folder:

vis_vest_[x].mat: per-trial data for single subject [x]
vis_vest_README.txt: details of data format

A trial was characterized by

oris: heading direction (+ve: right; -ve: left)
mod: modalities present (vis/vest/comb)
cohs: visual coherence, ∈ {0.25,0.37,0.70}

The subject's response consisted of

choice: 0 - "left"; 1 - "right"

rt: reaction time in [s], stimulus onset to choice

Further documents:

vis_vest_tutorial.pdf: detailed instructions, derivations, some solutions (if you get stuck)

Drugowitsch2014.pdf: paper that used this dataset

What you should do

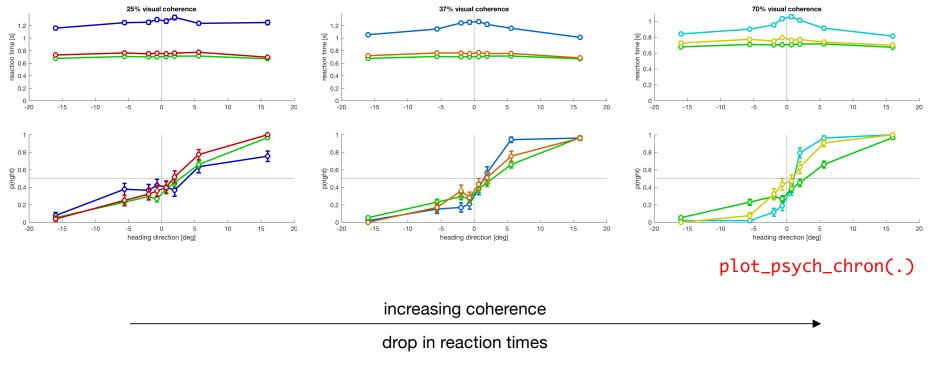
Look at vis_vest_tutorial.pdf

- Become familiar with the data and behavior
- Perform standard Bayesian cue combination analysis
- Derive Bayes-optimal evidence accumulation & simulate
 - Single cue, evidence reliability that changes over time
 - Multiple cues, constant evidence reliability
 - Bonus: combination of both
- Simulate behavior in a virtual experiment & try to match human data
- Bonus: refine simulations
- Bonus: derive optimal decision boundaries

Good luck!

Behavior

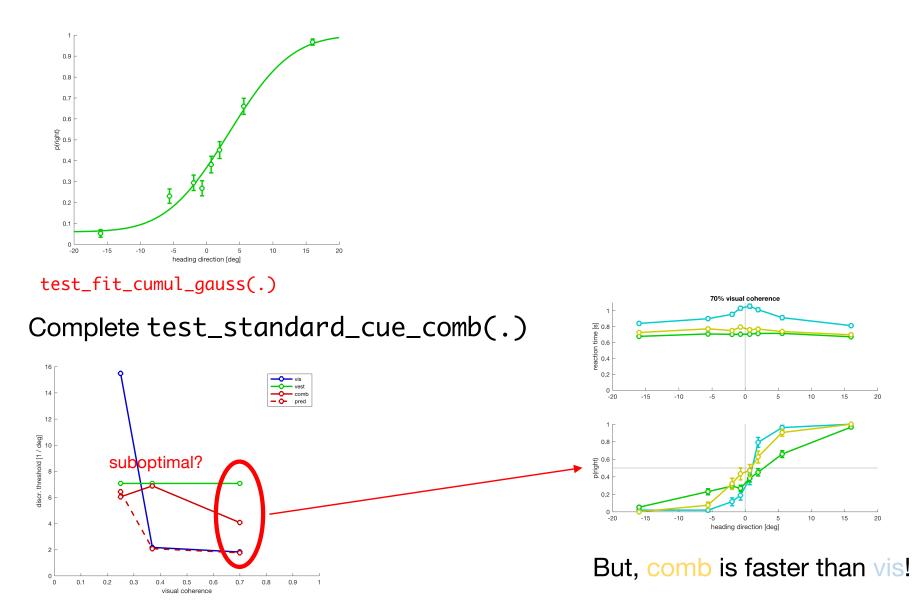
vestibular visual combined



increase in correct choices

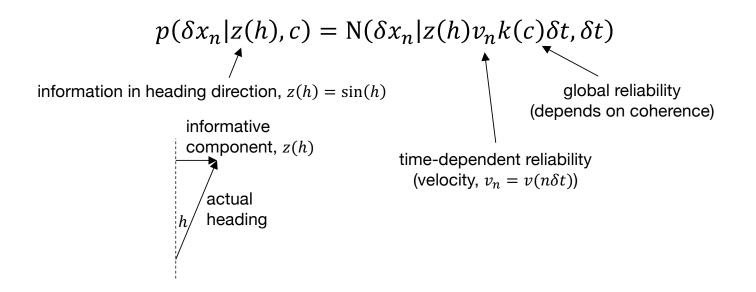
Standard cue combination test

Estimating thresholds σ^2 by fitting cumulative Gaussians



Deriving optimal evidence accumulation

Momentary evidence likelihood (visual modality)



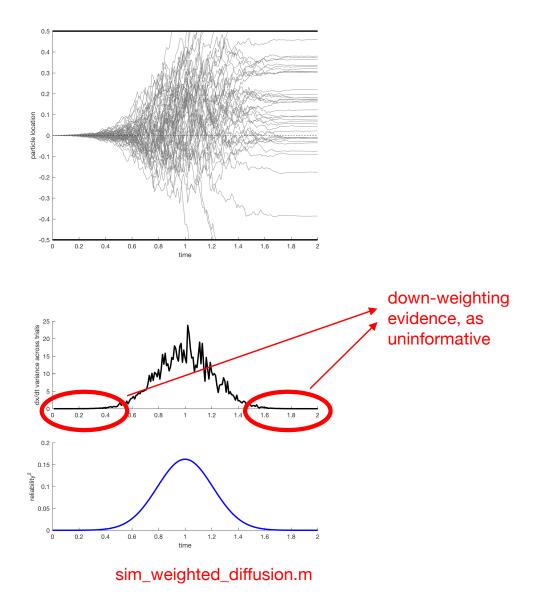
Find posterior z(h) given some momentary evidence $\delta x_1, \dots, \delta x_n$

$$p(z(h)|\delta x_1, \dots, \delta x_n) \propto \prod_{j=1}^n p(\delta x_j | z(h), c) \text{ with } x_v(t) = \sum_{j=1}^n v_j \delta x_j \quad V(t) = \sum_{j=1}^n v_n^2$$

Find posterior belief of right-ward motion,

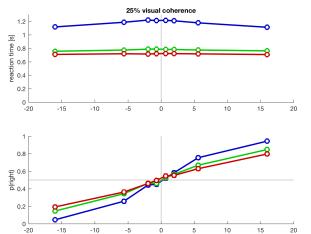
$$p(z(h) \ge 0 | x_{v}(t), t) \int_{0}^{\infty} p(z(h) | x_{v}(t), t) dz(h) \qquad (\text{use } \int_{0}^{\infty} N(x | a, b) dx = \Phi\left(\frac{a}{\sqrt{b}}\right))$$

Simulate weighted evidence accumulation



Simulating behavior

sim_behavior.m



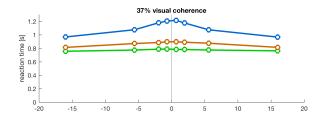
0

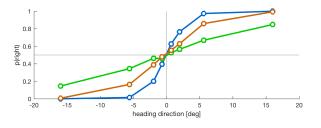
heading direction [deg]

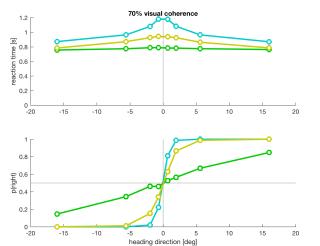
10

15

20





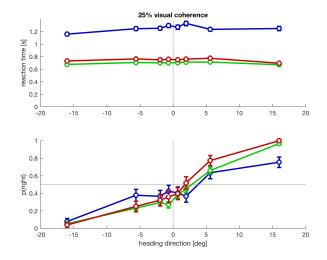


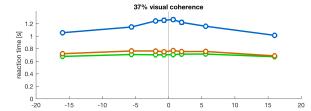
Actual behavior

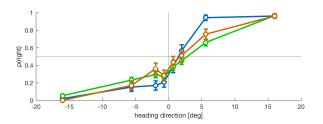
-10

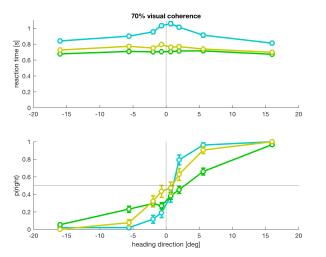
-5

-15









Road map

Perceptual decision-making

speed/accuracy trade-off

experiments investigating perceptual decisions

characteristics of behavior

Decision-making models accumulator / diffusion models fit to behavior & issues

Normative analysis

simple scenario: task difficulty known more complex: varying task difficulty time-varying decision boundaries: behavioral evidence

Neural correlates of perceptual decisions

Extended tutorial: multi-model decision-making