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Source code
Get code/data from

https://github.com/DrugowitschLab/CoSMo2017

Extract & open folder in Matlab, try load(‘phs_ah.mat’)

Add dm library to path
>> addpath(‘dm-0.3.1/matlab/’)
>> ddm_fpt_example
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Decisions are endemic

Every action is a decision

Requires: identification of choice options
e.g., should I stay, or should I go?

gather knowledge (external/internal) about either option

evaluate choices with respect to expected outcome

e.g., if I stay there will be trouble
if I go there will be double

Main focus today: perceptual decisions
(decisions based on what we observe)

speed? accuracy? underlying process?



Uncertain information

Information we have about the world is uncertain

Uncertainty due to noise and ambiguity

Noisy sensory noise (physical limitations)
discretization (spatial limitations)
noise in the environment

Ambiguous no unique reconstruction of environment
e.g. visual 3D to 2D mapping

mixture of odors



(Little) time contributes to uncertainty

There is no such a thing as an instantaneous percept

Yabus (1967)

Uncertain evidence is accumulated across time / space

Perceptual decisions (at least) require evidence accumulation across time



How much evidence should we accumulate?

More evidence is expected to lead to better decisions → why ever stop?

(“Not to be reproduced”, Magritte, 1937)

Reasons to stop accumulating: evidence/time is costly
world is volatile
evidence “flow” is limited



Costly evidence introduces speed/accuracy trade-off

fast choices slow choicesspeed/accuracy trade-off

might be inaccurate
come at low evidence cost

should be accurate
come at high cost

accumulate evidence over time

commit to / execute choice



The speed/accuracy trade-off in experiments

Forced choice paradigm

- show two simuli
(sequentially or simultaneously)

- choice is always A or B (or A and notA)

- choice is made (forced) on each trial

- difficulty might vary across blocks or trials

- record reaction time (RT)
choice

Examples
- word vs. non-word decisions

- numerosity judgments

- random dot motion task



Word vs. non-word decisions
(e.g., Ratcliff, Gomez & McKoon, 2004)



stay

Word vs. non-word decisions
(e.g., Ratcliff, Gomez & McKoon, 2004)



slan

Word vs. non-word decisions
(e.g., Ratcliff, Gomez & McKoon, 2004)



gohm

Word vs. non-word decisions
(e.g., Ratcliff, Gomez & McKoon, 2004)



goon

Word vs. non-word decisions
(e.g., Ratcliff, Gomez & McKoon, 2004)



RT quantile plots

Usual findings: decisions faster and more accurate for high-frequency words

Uncertainty: processing words / memory

Difficulty: word frequency / phonetic/lexical similarity / …

Ratcliff & Smith (2015)

Word vs. non-word decisions
(e.g., Ratcliff, Gomez & McKoon, 2004)



Numerosity judgments
(e.g., Ratcliff, 2006)

More/less than 50 dots?

Displays closer to 50-dot threshold: slower and less accurate



The random-dot motion task (RDM)

51.2% coherence

“right”?“left”?

12.8% coherence

“respond as quickly and accurately as possible”

(e.g., Newsome, Britten, Movshon & Shadlen, 1989; Roitman & Shadlen, 2002)

Uncertainty: stimulus is inherently ambiguous

Difficulty: coherence
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Behavior in the random dot motion task

Palmer, Huk & Shadlen (2005) dataset: 6 human subjects performing RDM task

load(‘phs_[subj_id].mat’)
(subj_id ∈ {‘ah’, ‘eh’, ‘jd’, ‘jp’, ‘mk’, ‘mm’})

Contains three vector, one element per trial:
choice 0 - ”left” / 1 - ”right”

rt reaction time in seconds
cohs signed coherence, positive/negative – rightwards/leftwards motion

To become familiar with dataset:
- open plot_psych_chron.m in editor
- update line 17 to compute vector corr_choice (0 = incorrect, 1 = correct)

Hint: choice is correct if “right” for rightward motion, “left” for leftward motion



Behavior in the random dot motion task

Computing correct choices
corr_choice = 0.5 * (sign(cohs + 1e-6) + 1) == choice;

0/1 for leftward/rightward motion

Subject JP

Higher coherence → faster, better choices speed/accuracy trade-off
for fixed coherence

Subject AH chronometric curve

psychometric curve



Subject MMSubject JD

Speed/accuracy trade-off in the PHS dataset?
load(‘phs_[subj_id].mat’)
plot_speed_accuracy

Here, most RT fluctuations driven by fluctuations in stimulus informativeness
(would need to compare fast/slow choices for same stimulus sequence)

faster choices also more accurate?

per-coherence RT median split



Usually skewed reaction time distributions

plot_rt_quant(coh, choice, rt)

heavy tails

Subject MK

plot_rt_dist(coh, choice, rt)

Try plot_rt_dist and plot_rt_quant

skewed reaction
time distributions



Features of a successful decision-making model

Fits mean reaction times and
choice probability across conditions

Reproduces task difficulty influence:
- easy task: fast choices, high accuracy
- hard task: slow choices, low accuracy
(to be revisited)

Accounts for variability:
reproduces RT distributions
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Accumulator models
Noisy evidence in small samples of continuous evidence stream
Accumulation to bound

𝐼(𝑡)

10% coherence, right

I'(𝑡)
𝐼((𝑡)

𝑝(𝐼|coh)

𝐼(𝑡)

0% coherence

I'(𝑡)𝐼((𝑡)

𝑝(𝐼|coh)

Inputs modulated by
coherence, motion direction

Exists in multiple variant, with
discrete (Poisson) inputs,
continuous (Gaussian) inputs, etc. 

𝑥 (
𝑡
,𝑥
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+
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𝑑𝑡 = 𝐼(

𝑑𝑥'
𝑑𝑡 = 𝐼'



Accumulator model have their issues

Feature variable reaction times,
but not with with a heavy-tailed
distribution

Don’t well reproduce
reaction-time modulation by difficulty

sim_accum.m



The drift diffusion model
(or diffusion decision model; or diffusion model; Ratcliff, 1978)

+

𝐼((𝑡)

+

𝐼'(𝑡)

+

+

𝑥((𝑡) 𝑥'(𝑡)

-- d𝑥(
d𝑡 = 𝐼( − 𝐼'

d𝑥'
d𝑡 = 𝐼' − 𝐼( = −

d𝑥(
d𝑡

Introduced by Ratcliff (1978) as model for memory recall;
one of the most successful models in neuroscience

accumulators
perfectly
anti-correlated

single decision process



The drift diffusion model

drift diffusion

correct!

incorrect!

choose “right”

choose “left”

pa
rti

cl
e 

lo
ca

tio
n 
𝑥(
𝑡)

drift = K × coherence

time
|𝜇| = mean evidence strength

d𝑥
d𝑡 = 𝐼( − 𝐼' = 𝜇 + 𝜎𝜂(𝑡)

drift diffusion
standard dev.

white noise
process

sign 𝜇 = determines correct choice
|<|
= = signal/noise ratio

accumulating uncertain evidence = stochastic particle motion 

commit to / execute choice = threshold crossing



Simulating the drift-diffusion model

d𝑥
d𝑡 = 𝜇 + 𝜎𝜂 𝑡 ≈

𝑥 𝑡 + 𝛿𝑡 − 𝑥(𝑡) 
𝛿𝑡

Using the Euler method:

𝑥 𝑡 + 𝛿𝑡 = 𝑥 𝑡 + 𝜇𝛿𝑡 + 𝛿𝑡� 𝜎𝑧

𝑧 ∼ N(0,1)

From continuous-time process…

…to discrete-time simulation

(zero-mean unit-variance
Gaussian random number)

See, for example, sim_ddm.m

Careful: too large 𝛿𝑡 cause
biased first-passage time

Drugowitsch (2016)

Alternatives: see dm library



Some diffusion model predictions

Generated with sim_ddm.m

What happens for higher/lower bounds?
Try it out: ddm_sim.m, setting of theta

𝜇 = 0

𝜇 = 2

𝐷𝑇|𝜇, 𝜃 = J
𝜃', 𝜇 = 0

	
𝜃
𝜇 tanh	(𝜃𝜇), otherwise

𝑝 𝑟𝑖𝑔ℎ𝑡 =
1

1 + 𝑒V'WX
(e.g. Palmer, Huk & Shadlen, 2005)



Adjusting drift and boundary heights

Ratcliff & McKoon (2008)

Lower drift:
slower, less accurate choices

Raise bound:
Slower, more accurate choices



Diffusion models match well observed behavior
Assume that 𝜇 = 𝑘	×	coherence,
reaction time = diffusion model decision time 𝐷𝑀 + non-decision time 𝑡\].
Gives 3 parameters: 𝑘, 𝜃, 𝑡\]
Minimizing parameter log-likelihood
given mean RTs and choice probabilities (Palmer, Huk & Shadlen, 2005)

fit_psych_chron(cohs, choice, rt)
Subject JP



…but there are issues: #1 symmetry
Incorrect choices are frequently slower than correct choices

Uncomment relevant lines
in plot_psych_chron.m

Subject MM

(but see subj JP)

slower incorrect
than correct choices



Vanilla diffusion models predict symmetric RT distributions

actual path

mirror pathpa
rti

cl
e 

lo
ca

tio
n

Reason: flipping path scales its probability by a constant
𝑛_` up-steps with probability 𝑝_`

𝑝 actual	path = 𝑝_`
\de 1 − 𝑝_`

\fghi

𝑛]jk\ down-steps with probability 1 − 𝑝_`

𝑛]jk\ up-steps with probability 𝑝_`

𝑝 mirror	path = 𝑝_`
\fghi 1 − 𝑝_`

\de

𝑛_` down-steps with probability 1 − 𝑝_`

𝑝 mirror	path =
𝑝_`

1 − 𝑝_`

W

𝑝(actual	path)

Ratcliff & McKoon (2008)

reaction time distributions
are symmetric!



…but there are issues: #2 long-tail predictions
Observed reaction time distributions don’t always have a long tail
Try plot_fitted_rt_dists(cohs, choice, rt)

Subject JP



Monkeys are even less patient

Roitman & Shadlen (2002) dataset: 2 monkeys performing RDM task

load(‘rs_[monkey_id].mat’) (monkey_id ∈ {‘b’, ‘n’})
plot_fitted_rt_dists(cohs, choice, rt)

Monkey B



Heuristic “fix”: the Ratcliff diffusion model
+ diffusion models implement both, and fit mean RTs and choice probabilities
- predict same correct/incorrect RTs
- don’t match reaction time distributions

How to fix: add more parameters!

Variable drift rates: slower errors

Ratcliff & McKoon (2008)

Variable starting point: faster errors
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Normative approach: how ought we make decisions?

accumulating evidence

deciding when to decide

handling uncertain information
using Bayesian statistics

Rev. Thomas Bayes
(1701-1761)

trading of benefits with costs
using Dynamic programming

Richard E. Bellman
(1920-1984)



A model for the momentary evidence
Assume: fixed coherence 𝜇m, two motion directions, 𝜇 ∈ {−𝜇m, 𝜇m}.

At any point 𝑛 in time: noisy observation 𝑥\ of 𝜇,

𝑝 𝑥\ 𝜇 = N(𝑥\|𝜇, 1)

“𝑥\ is Gaussian/Normal
with mean 𝜇 and variance 1”

Observe 𝑥(, 𝑥', …; identify if they came from blue or orange distribution

𝑝 𝜇 = 𝜇m 𝑥(:\ = ?

uniform prior, 𝑝 𝜇 = −𝜇m = 𝑝 𝜇 = 𝜇m = (
'

𝜇

𝑥( 𝑥' 𝑥r𝑥( 𝑥' 𝑥r

𝑧( 𝑧' 𝑧r

Kalman filter

stationary
latent state

Why not use Kalman fiter? Explicit derivations provide further insight

𝜇m−𝜇m 𝑥\

?

0

difficulty



Deriving the posterior

𝑝 𝜇 = 𝜇m 𝑥(:s 	=
𝑝 𝑥(:s 𝜇 = 𝜇m 𝑝 𝜇 = 𝜇m
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accum_evidence_discrete.m



Moving to continuous time
Smaller time steps 𝛿𝑡: less reliable evidence 𝛿𝑥\ per time step

𝜇m−𝜇m 𝛿𝑥\

𝑝 𝛿𝑥\ 𝜇 = N(𝛿𝑥\|𝜇𝛿𝑡, 𝛿𝑡)

Find 𝑝(𝜇 = 𝜇m|𝑥(:s), using 𝑁𝛿𝑡 = 𝑡 and ∑ 𝛿𝑥\�
\ = 𝑥(𝑡)

𝑝 𝜇 = 𝜇m 𝑥(:s 	∝X 𝑒
VX|

y

' s~�zX| ∑ ~xi�
i

	= 𝑒V
X|y
' �zX|x(�)

𝑝 𝜇 = 𝜇m 𝑥(:s =
1

1 + 𝑒V'X|x(�)

Shows why diffusion models are useful

d𝑥
d𝑡 = 𝜇 + 𝜂(𝑡)

𝑥 𝑡 > 0 implies 𝑝 𝜇 = 𝜇m 𝑥(:s > (
'

𝑥 𝑡 < 0 implies 𝑝 𝜇 = 𝜇m 𝑥(:s < (
'

𝑥(
𝑡)

𝑝(
𝜇
=
𝜇 m
|𝑥
𝑡
)

time
accum_evidence_continuous.m



Normative approach: how ought we make decisions?

accumulating evidence

deciding when to decide

handling uncertain information
using Bayesian statistics

Rev. Thomas Bayes
(1701-1761)

trading of benefits with costs
using Dynamic programming

Richard E. Bellman
(1920-1984)



When to stop accumulating evidence?
Assume: aim is to maximize reward

more momentary evidence

accumulate forever!

higher expected reward

Stopping to accumulate is only rational in presence of cost
- Motivational/effort cost
- Cost of attention/computation
- Opportunity cost; less time on future choices
(can be internal & external)

time

ex
pe

ct
ed

 re
w

ar
d

accum_evidence_reward.m

(reward 1/0 for correct/incorrect choices)



Objective functions
Maximizing expected reward for single choice

Payoff 1 for correct choice, 0 for incorrect choice,
cost 𝑐 per second accumulation

𝐸𝑅 = 𝑃𝐶 − 𝑐 𝑡

ex
pe

ct
ed

 re
w

ar
d

time
Maximizing expected reward across multiple choices

Sequence of choices with inter-choice-interval 𝑡�

𝑅𝑅 =
𝑃𝐶 − 𝑐 𝑡
𝑡 + 𝑡�

re
w

ar
d 

ra
te

timeOptimal stopping required closed-loop control



Interlude: dynamic programming (DP)
Markov decision process (MDP)
- set of states, 𝑠(, 𝑠', …
- set of actions, 𝑎(, 𝑎', …
- transition probabilities, 𝑝(𝑠�|𝑠, 𝑎)
- rewards, 𝑟(𝑠, 𝑎)
- discount factor, 𝛾 ≤ 1

𝑠(

𝑠'𝑠r

𝑠� 𝑠�

𝑠�

𝑟 = 0

𝑟 = 0

𝑟 = 0𝑟 = 0

𝑟 = 𝑎
𝑟 = 1

find optimal policy, 𝜋(𝑠) returning action
for each state to maximize expected
discounted future reward (or return)

Aim:

𝑉� 𝑠 = }𝛾\
�

\�m

𝑟 𝑠\, 𝜋(𝑠\)
`(��,�y,…|�)

= 𝑟 𝑠, 𝜋 𝑠 + 𝛾 𝑉� 𝑠� `(��|�,�)

“value” of state 𝑠 under policy 𝜋



Example: navigation

𝑠(

𝑠'𝑠r

𝑠� 𝑠�

𝑠�

𝑟 = 0

𝑟 = 0

𝑟 = 0𝑟 = 0

𝑟 = 𝑎
𝑟 = 1

𝜋(

𝜋'

Bellman’s principle of optimality
“optimal policy: whatever initial state/decision, the remaining decisions must
constitute an optimal policy with regard to state resulting from first decision”

𝑉�y 𝑠( = 𝛾'

𝑉�� 𝑠( = 𝛾r𝑎 + 𝛾�
Specific solution:

𝑉∗ 𝑠 = max
�

𝑟 𝑠, 𝑎 + 𝛾 𝑉∗ 𝑠′ `(��|�,�)Bellman’s equation:

choose 𝜋( if 𝑎 ≥ (
�
− 𝛾

𝑠�

✘

𝑎 + 𝛾
𝑠r

✘

𝛾𝑎 + 𝛾'
𝑠�

𝜋(
𝜋'

1
1

𝑠'
𝛾'𝑎 + 𝛾r

𝛾

𝑠(

𝛾'
𝛾r𝑎 + 𝛾�

the maximizing action provides the optimal policy



Dynamic programming applied to optimal stopping

- set of states, 𝑠(, 𝑠', …

- set of actions, 𝑎(, 𝑎', …

- transition probabilities, 𝑝(𝑠�|𝑠, 𝑎)

- rewards, 𝑟(𝑠, 𝑎)

- discount factor, 𝛾 ≤ 1 assume 𝛾 = 1

accumulate/make choice

accumulated evidence/belief,
𝑔 𝑡 ≡ 𝑝(𝜇 = 𝜇m|𝑥 𝑡 )

change of accumulated evidence,
belief transition 𝑝(𝑔�|𝑔)

cost for accumulation/rewards
choose 𝜇m: 𝑟 = 𝑔

choose −𝜇m: 𝑟 = 1 − 𝑔
accumulate another 𝛿𝑡: 𝑟 = −𝑐𝛿𝑡

Bellman’s equation for perceptual decisions

𝑉 𝑔 = max 𝑔, 1 − 𝑔, 𝑉 𝑔� ` 𝑔� 𝑔 − 𝑐𝛿𝑡



The belief transitions function

plot_g_trans_point_hyp.m

Examples for 𝑝(𝑔�|𝑔)
decreasing 𝛿𝑡

decreasing 𝜇m



The value function for perceptual decisions

𝑉 𝑔 = max 𝑔, 1 − 𝑔, 𝑉 𝑔� ` 𝑔� 𝑔 − 𝑐𝛿𝑡

accumulate
more evidence

ch
oo

se
 −
𝜇 m

ch
oo

se
 𝜇
m

What happens if 𝑐 or 𝜇m changes?
Try it out:
plot_dp_valueintersect_point(𝜇m, 𝑐)

𝜃�1 − 𝜃�

𝑥(𝑡) = (
'X|

log �(�)
(V�(�)

𝜃x

−𝜃x

time

𝜃�

1 − 𝜃�

be
lie

f

time

plot_dp_diffusion_point(𝜇m, 𝑐):

Diffusion models implement the reward-maximizing strategy

𝜇m = 1; 𝑐 = 0.2



Finding the bound without dynamic programming
We now know: diffusion model with time-invariant bound is optimal

Initial aim: maximize 𝐸𝑅 = 𝑃𝐶 − 𝑐 𝑡

1
1 + 𝑒V'X|W

𝜃
𝜇m
tanh(𝜇m𝜃)

maximize directly

Complete direct_bound(𝜇m, 𝑐) in plot_dp_bound_direct_maximization.m

bo
un

d 
𝜃

cost 𝑐

bo
un

d 
𝜃

drift 𝜇m

too little
evidence

enough evidence
for fast choices

ER_deriv = @(theta) (mu0 - 2 * c * theta) * sech(theta * mu0)^2 / 2 - …
c * tanh(theta * mu0) / mu0;

theta = fzero(ER_deriv, 1);



The sequentual probability ratio test (SPRT)
For this simple case, the optimal policy has been known for a while.

Relates to diffusion models and expected reward maximization (Bogacz et al., 2006)

Sequential probability ratio test (SPRT) (Wald, 1947; Wald & Wolfowitz, 1948; Turing, 194?)

Given two hypotheses 𝐻(,𝐻' with known likelihoods 𝑝 𝑥 𝐻( , 𝑝 𝑥 𝐻' ;
sequence 𝑥(, 𝑥', … generated by which hypothesis?

Among all test with same power (type 1 error),
SPRT requires least samples on average (Wald & Wolfowitz, 1948).

SPRT accumulates evidence as long as

𝐵∗ ≤
∏ 𝑝 𝑥\ 𝐻(�
\

∏ 𝑝 𝑥\ 𝐻'�
\

≤ 𝐴∗

Limitation: assumes known likelihood functions (e.g. known coherence)
the same applies to our derivation so far

This rarely holds in real-world decisions! 
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Introducing difficulty as a nuisance
Nuisance: not central to the question, but we have to deal with it

e.g., RDM stimulus: motion direction + motion coherence
want to know don’t care

Stimulus variable: 𝜇 = 𝑧	×	𝑦

latent state of interest,
𝑧 = sign(𝜇) ∈ −1,1 nuisance,

determines difficulty,
𝑦 = |𝜇| 𝑝 𝑦

𝑦
hard easy

Momentary evidence: 𝑝 𝛿𝑥\ 𝜇 = 𝑁(𝑥\|𝜇𝛿𝑡, 𝛿𝑡)

noisy information about 𝜇

Aim: 𝑝 𝑧 = 1 𝛿𝑥(, 𝛿𝑥', … = ∫ 𝑝 𝑧 = 1, 𝑦 𝛿𝑥(, 𝛿𝑥', … d𝑦 = 𝑝(𝜇 ≥ 0|𝛿𝑥(, 𝛿𝑥', … )

identify latent state without nuisance

𝑝 𝜇

𝜇
hard easy𝑧 = 1easy 𝑧 = −1

𝑝 𝜇 = 𝑁 0, 𝜎X'	

overall difficulty
𝜎X'



Evidence accumulation with nuisance

𝑝(𝜇|𝛿𝑥(:s) 	∝X 𝑁 𝜇 0, 𝜎X' u𝑁 𝛿𝑥\ 𝜇𝛿𝑡, 𝛿𝑡
�

\

	∝X 𝑒
VX

y

'
(
¨<y
z� zXx �

	∝X 𝑁 𝜇 𝑥 𝑡
𝜎XV' + 𝑡

, 1
𝜎XV' + 𝑡

𝑝 𝜇 ≥ 0 𝑥 𝑡 , 𝑡 = © 𝑝 𝜇 𝛿𝑥(:s d𝜇
�

m
= Φ

𝑥 𝑡

𝜎XV' + 𝑡
�

𝑥 𝑡

𝜎XV' + 𝑡
�

𝑝
𝜇
≥
0
𝑥
𝑡
,𝑡

Derivation in two steps: posterior over latent state and nusiance, …

…then averaging over nuisance

Posterior belief now depends on both 𝑥(𝑡) and 𝑡

accum_evidence_gauss.m

𝑝
𝜇
≥
0
𝑥
𝑡
,𝑡

time

𝑥(
𝑡)



Consequences for optimal stopping

𝑔 𝑡 ≡ 𝑝 𝜇 ≥ 0 𝑥 𝑡 , 𝑡 = Φ
𝑥 𝑡

𝜎XV' + 𝑡
�

Mapping between belief 𝑔(𝑡) and particle location 𝑥(𝑡) becomes time-dependent

→ the expected change 𝑝(𝑔�|𝑔, 𝑡) also depends on time

required to compute expected return for
accumulating more evidence

→ Value function depends on 𝑔 (or 𝑥) and time

𝑉 𝑔, 𝑡 = max 𝑔, 1 − 𝑔, 𝑉 𝑔�, 𝑡 + 𝛿𝑡 ` 𝑔� 𝑔, 𝑡 − 𝑐𝛿𝑡

deciding
immediately

accumulating more evidence,
and deciding later

→ decision boundaries depend on time



The belief transition function, unknown evidence reliability

plot_g_trans_gauss_hyp.m

increasing 𝑡

Increasing 𝜎X'



The value function and decision boundaries

𝑉 𝑔, 𝑡 = max 𝑔, 1 − 𝑔, 𝑉 𝑔�, 𝑡 + 𝛿𝑡 ` 𝑔� 𝑔, 𝑡 − 𝑐𝛿𝑡

deciding
immediately

accumulating more evidence,
and deciding later

plot_dp_valueintersect_gauss(𝜎X', 𝑐)

What happens if you change
- overall difficulty, 𝜎X',
- accumulation cost, 𝑐,
- set 𝑐 = 0, ? 

time-dependent
decision boundaries



Diffusion models with time-dependent boundaries
be

lie
f

𝜃�(𝑡)

1 − 𝜃�(𝑡)

time

𝜃x(𝑡)

−𝜃x(𝑡)

time

diffusion «x
«�
= 𝜇 + 𝜂(𝑡)

Unknown evidence reliability → collapsing boundary diffusion model optimal

Consequences:
- SPRT is suboptimal
- No analytical RT/PC solutions
→ no direct ER optimization possible

𝑥 𝑡 = ΦV( 𝑔 𝑡 𝜎XV' + 𝑡
�



Are DDMs with time-invariant bounds suboptimal?

diffusion model bounds

𝜃� 𝑡 = Φ
𝜃x 𝑡

𝜎XV' + 𝑡
�

𝜃 x
(𝑡
)

Constant diffusion model bounds implement collapsing bounds in belief
→ might be close-to-optimal (under certain circumstances)

bounds in belief space

𝜃 �
(𝑡
)

ddm_const_bound_gauss.m



𝜇time

𝜃(𝑡)

−𝜃(t)

Consequence of time-dependent boundaries

time

increasing 𝜇

𝑝(𝑡_``¬|𝜇)

𝑝(𝑡®jk¬|𝜇)

𝜃

−𝜃

co
ns

ta
nt

 b
ou

nd
ar

ie
s

co
lla

ps
in

g 
bo

un
da

rie
s

earlier
choices

shorter tails

slower
errors

𝜇

plot_fpt_vary_bound_example.m
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Evidence for bound collapse
Collapsing bound in belief → predicts dropping performance over time

plot_pcorrect_over_time.m

Palmer, Huk & Shadlen (2005) dataset Roitman & Shadlen (2002) dataset

In theory: we could reconstruct decision boundaries (in belief) from above plots
In practice: the non-decision time might be stochastic → prevents direct mapping



Are boundaries generally collapsing?

(Hawkins et al., 2015)

- collapse in particle space, not belief space
- fitting quantile plots, that might miss tail information

p(correct)
0 1

re
sp

on
se

 ti
m

e

(which are affected by bound collapse)
- does it matter?

How much do we gain from a collapsing boundary?
When do we expect such gains?



Hands on: benefit of collapsing boundaries

Aim: compare expected reward from optimal policy
and that arising from diffusion model with tuned constant boundary

Follow instructions in collapse_gain.m

Hints: Value function 𝑉(𝑔, 𝑡) returns expected reward when holding
belief 𝑔 at time 𝑡 and behaving optimally thereafter.
→ 𝑉 𝑔 = �

y, 𝑡 = 0 is expected reward for whole decision. See
plot_dp_diffusion_gauss.m for how to find 𝑉(𝑔, 𝑡).

For given 𝜇, we know probability correct and expected decision
time for diffusion model with constant boundary. To compute
expected reward, we can average these across multiple 𝜇 that
well-represent 𝑝 𝜇 = 𝑁 𝜇 0, 𝜎X' . See fixedbound_er(.) in
collapse_gain.m



Hands on: benefit of collapsing boundaries
Finding expected reward for optimal strategy:
gs = dp_discretized_g(dp_ng);
[~, Ve] = dp_getvalues_gauss_hyp(gs, dp_dt, dp_maxt, …

sigmu2s(isigmu2), c);
opter_sigmu2(isigmu2) = Ve(1,ceil(dp_ng / 2));

Completing fixedbound_er(.) to return expected reward for fixed bound:
pcs = 1 ./ (1 + exp(-2 * theta * abs(mus)));
dts = theta ./ mus .* tanh(theta * mus);
dts(mus == 0) = theta^2;
er = mean(pcs) - c * mean(dts);

Finding bound height that maximizes expected reward:
[~,er] = fminsearch(…

@(theta) -fixedbound_er(theta, cs(ic), sigmu2, fb_nmu),…
1);

conster_c(ic) = -er;



Hands on: benefit of collapsing boundaries

Might change for stronger boundary collapse
e.g., accumulation cost that increases over time (e.g., Drugowitsch et al., 2012)

For these scenarios, optimal solution barely better than constant boundary
(Recall: still collapsing boundary in belief)

ex
pe

ct
ed

 re
w

ar
d

increasing 𝑐 increasing 𝜎X'

numerical issues:
constant-bound strategy cannot
be better than optimal strategy
(DP solution is approximate)
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Neural signatures of perceptual decisions in macaque

Gold & Shadlen (2007)

Wurtz (2015) Britten et al. (1993)



Memory-guided saccade coding in macaque LIP

Wurtz (2015)

Colby, Duhamel & Goldberg (1996)

sustained activity
In memory-guided
saccades



Evidence accumulation coding in macaque LIP

Gold & Shadlen (2007);
LIP data from Roitman & Shadlen (2002);
MT data from Britten (1992)



Does area LIP implement a diffusion model?

time

mirrored
copy

single bound

time

pa
rti

cl
e 

lo
ca

tio
n

Mazurek et al. (2003)



Are LIP traces symmetric around common mean?

time

rs_datacode/lip_rt_roit_fig_7.m

𝑟�\

𝑟j_�

𝑏

pa
rti

cl
e 

lo
ca

tio
n

𝑟�\ 𝑡 = 𝑏 + 𝑥(𝑡)

𝑟j_� 𝑡 = 𝑏 − 𝑥(𝑡)
𝑏 ≈

𝑟�\ 𝑡 + 𝑟j_� 𝑡 �
2

(for 𝑡 > 200𝑚𝑠)

Plot 2𝑏 − 𝑟_𝑜𝑢𝑡 𝑡 :
avgact = mean(nanmean((m_mr1c(:,dot_ax>=200)+…

m_mr2c(:,dot_ax>=200))/2,2));
mirroredact = m_mr2c;
mirroredact(:,dot_ax >= 200) = …

2*avgact - mirroredact(:,dot_ax >= 200);
plot(dot_ax, nanrunmean(mirroredact',1),'--','LineWidth',2);

not
fully
symmetric

increasing
“urgency”
signal



Urgency signal implements collapsing boundary

Data from Churchland et al. (2008)

Drugowitsch et al. (2012)



Neural evidence accumulation signatures in rodents

Rat click count discrimination task → accumulate click difference

seems to reflect accumulation

seems to reflect decision

Hanks et al. (2015)



But: inactivation studies
Rodents:

Monkeys:

Katz et al. (2016)

momentary evidence

PPC

FOF

choice

Ehrlich et al. (2015)

momentary evidence

MT

LIP

choice



Also: not everything that accumulates, ramps

Rodent VR cue accumulation task

Morcos & Harvey (2016)

This does not invalidate normative approach!

Neural implementation is less clear
(there are multiple ways to implement evidence accumulation)
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Bayesian cue combination
Frequently, evidence from multiple cues needs to be combined

Ernst & Banks (2002)

𝑤µ¶j·¸

combined

𝜎¶j·¸
visual

𝜎¹��

𝑤µº»¼

𝑝(𝑤|visual)
haptic

𝑤µ¾�`

𝜎¾�`
𝑝(𝑤|haptic)

bar width

𝑝(𝑤|haptic)

bar width

reduce
visual
information

More reliable cue contributes more strongly

Bayesian cue integration:

1
𝜎¶j·¸' =

1
𝜎¹��'

+
1

𝜎¾�`'Combined reliability > individual reliability



The speed/accuracy trade-off in mutlisensory decision-making
Standard cue combination paradigm is fixed-duration
- Ignores temporal evidence accumulation
- Frequently, decision time is under the decision-maker’s control

A cue-combination reaction time task (Drugowitsch et al., 2014)

vestibular combined

stimulus
always congruentscreen

(3D random-dot
optic flow, varying

coherence)

motion
platform

visual
condition

time1s
2s

velocity
acceleration

unreliable
reliable

choose ‘left’
h < 0

choose ‘right’
h > 0

heading
h

heading discrimination task varying reliability time-course



Visual stimulus example



Visual reliability modulated by coherence



Evidence reliability modulated by four factors

choose ‘left’
h < 0

choose ‘right’
h > 0

heading
h

heading direction (angle away from straight-ahead)

visual flow field coherence

velocity/acceleration time-course time1s
2s

velocity
acceleration

unreliable
reliable

presence of multiple modalities



The vis/vest cue combination dataset

See content of vis_vest folder:
vis_vest_[x].mat:

vis_vest_README.txt:
per-trial data for single subject [x]
details of data format

A trial was characterized by
oris:
mod: modalities present (vis/vest/comb)

heading direction (+ve: right; -ve: left)

cohs: visual coherence, ∈ {0.25,0.37,0.70}
The subject’s response consisted of

choice: 0 - ”left”; 1 – “right”
rt: reaction time in [s], stimulus onset to choice

vis_vest_tutorial.pdf: detailed instructions, derivations,
some solutions (if you get stuck)

Drugowitsch2014.pdf: paper that used this dataset

Further documents:



What you should do
Look at vis_vest_tutorial.pdf

- Become familiar with the data and behavior

- Perform standard Bayesian cue combination analysis

- Derive Bayes-optimal evidence accumulation & simulate

- Single cue, evidence reliability that changes over time

- Multiple cues, constant evidence reliability

- Bonus: combination of both

- Simulate behavior in a virtual experiment & try to match human data

- Bonus: refine simulations

- Bonus: derive optimal decision boundaries



Good luck!



Behavior

increasing coherence

vestibular
visual

combined

drop in reaction times

increase in correct choices

plot_psych_chron(.)



Standard cue combination test
Estimating thresholds 𝜎' by fitting cumulative Gaussians

test_fit_cumul_gauss(.)

Complete test_standard_cue_comb(.)

suboptimal?

But, comb is faster than vis!



Deriving optimal evidence accumulation
Momentary evidence likelihood (visual modality)

𝑝 𝛿𝑥\ 𝑧 ℎ , 𝑐 = N 𝛿𝑥\ 𝑧 ℎ 𝑣\𝑘 𝑐 𝛿𝑡, 𝛿𝑡

information in heading direction, 𝑧 ℎ = sin ℎ

actual
heading

informative
component, 𝑧(ℎ)

ℎ

time-dependent reliability
(velocity, 𝑣\ = 𝑣(𝑛𝛿𝑡))

global reliability
(depends on coherence)

Find posterior 𝑧(ℎ) given some momentary evidence 𝛿𝑥(, … , 𝛿𝑥\

𝑝 𝑧 ℎ 𝛿𝑥(, … , 𝛿𝑥\ ∝u𝑝 𝛿𝑥Ã 𝑧 ℎ , 𝑐
\

Ã�(
𝑥¹ 𝑡 =}𝑣Ã𝛿𝑥Ã

\

Ã�(

𝑉 𝑡 =}𝑣\'
\

Ã�(

with

Find posterior belief of right-ward motion,

𝑝 𝑧 ℎ ≥ 0 𝑥¹(𝑡), 𝑡 © 𝑝 𝑧 ℎ 𝑥¹ 𝑡 , 𝑡 d𝑧(ℎ)
�

m
(use	∫ N 𝑥 𝑎, 𝑏 d𝑥�

m = Φ �
¸�
)



Simulate weighted evidence accumulation

sim_weighted_diffusion.m

down-weighting
evidence, as
uninformative



Simulating behavior
sim_behavior.m

Actual behavior





Road map
Perceptual decision-making

speed/accuracy trade-off
experiments investigating perceptual decisions
characteristics of behavior

Decision-making models
accumulator / diffusion models
fit to behavior & issues

Normative analysis
simple scenario: task difficulty known
more complex: varying task difficulty
time-varying decision boundaries: behavioral evidence

Neural correlates of perceptual decisions

Extended tutorial: multi-model decision-making


